文件名称:Fast and Accurate Calibration of a Kinect Sensor
文件大小:1.88MB
文件格式:PDF
更新时间:2019-02-01 07:29:06
Fast Accurate Calibration Kinect
The article describes a new algorithm for calibrating a Kinect sensor that achieves high accuracy using only 6 to 10 image-disparity pairs of a planar checkerboard pattern. The method estimates the projection parameters for both color and depth cameras, the relative pose between them, and the function that converts kinect disparity units (kdu) into metric depth. We build on the recent work of Herrera et. al [8] that uses a large number of input frames and multiple iterative minimization steps for obtaining very accurate calibration results. We propose several modifications to this estimation pipeline that dramatically improve stability, usability, and runtime. The modifications consist in: (i) initializing the relative pose using a new minimal, optimal solution for registering 3D planes across different reference frames, (ii) including a metric constraint during the iterative refinement to avoid a drift in the disparity to depth conversion, and (iii) estimating the parameters of the depth distortion model in an open-loop post-processing step. Comparative experiments show that our pipeline can achieve a calibration accuracy similar to [8] while using less than 1/6 of the input frames and running in 1/30 of the time.