文件名称:Trinity: A Distributed Graph Engine on a Memory Cloud
文件大小:337KB
文件格式:PDF
更新时间:2021-05-09 08:34:48
Trinity Graph Engine Memory Cloud
Computations performed by graph algorithms are data driven, and require a high degree of random data access. Despite the great progresses made in disk technology, it still cannot provide the level of efficient random access required by graph computation. On the other hand, memory-based approaches usually do not scale due to the capacity limit of single machines. In this paper, we introduce Trinity, a general purpose graph engine over a distributed memory cloud. Through optimized memory management and network communication, Trinity supports fast graph exploration as well as efficient parallel computing. In particular, Trinity leverages graph access patterns in both online and offline computation to optimize memory and communication for best performance. These enable Trinity to support efficient online query processing and offline analytics on large graphs with just a few commodity machines. Furthermore, Trinity provides a high level specification language called TSL for users to declare data schema and communication protocols, which brings great ease-of-use for general purpose graph management and computing. Our experiments show Trinity’s performance in both low latency graph queries as well as high throughput graph analytics on web-scale, billion-node graphs.