文件名称:Production Testing of RF and System-on-a-Chip Devices for Wireless Communications((Artech.House.Publishers.Apr.2004)
文件大小:3.3MB
文件格式:PDF
更新时间:2012-02-28 14:28:08
RF SOC Production Testing
Production Testing of RF and System-on-a-Chip Devices for Wireless Communications Keith B. Schaub Joe Kelly ========================== It came to our attention that there were not any books available that enlightened the engineer on the concepts of production testing of radio frequency (RF) and systemon- a-chip (SOC) devices. There is a number of great books and application notes on the subject of RF measurement techniques. There is also a number of great mixedsignal analysis and measurements how-to books. However, there are no books that bring the two worlds of RF and mixed-signal testing into one volume. It is our intention to bridge this gap. Under the topic of electronics there are two major categories of devices, digital and analog. Digital refers to those devices that manipulate data between two states (i.e., 1 or 0). Analog refers to the manipulation of continuous waveforms. Analog electronics is a very general topic, and for the most part, the subject falls under the category of mixed signal. Analog measurements are also covered in this category. However, when discussing RF electronics (also analog), special attention must be paid to the rules introduced under the category of mixed-signal testing. It is these rules that often make people approach RF with trepidation. But, they are simply that, rules. If they are followed, RF is very straightforward. An RF engineer could reference back to old college books as these topics and test concepts are derived from the fundamental theories of physics. However, our goal is to present these measurements within this book in a straightforward manner, with explanations covering the gotchas that all of us have run into over time. Indeed, many of the descriptions will be based on microwave theory and the theory of microwave devices. But this is a necessary foundation, so that topics may be taken two steps further: 1. Describing the test; 2. Explaining how to implement production-testing solutions. Testing and measuring RF and SOC devices is routinely performed on bench tops in laboratories, but production testing adds the constraints of performing these tests significantly more efficiently, while maintaining the same level of quality. The term efficiently commonly means “more quickly,” but it can also mean introducing creative means such as multisite testing or parallel testing. Topics such as these will be covered throughout the chapters in this book. This book is intended for a wide variety of audiences. They include SOC applications engineers, engineering managers, product engineers, and students, although other disciplines can benefit as well. The book is constructed in two parts. The first part consists of the first three chapters, readable like a novel, informing the reader of the details of production testing and presenting items to consider such as cost of test xiii (COT). The second half (Chapters 4 through 8) is written as a handbook, specifically for applications engineers. It is our intention to create a book that will be used as a reference, providing algorithms and good-practice techniques. Additionally, the appendixes that we have included contain items that would typically be needed by SOC engineers. The book is also aimed at managers of technical teams, that they may pick up this book, read the first few chapters, and feel comfortable in relatively detailed discussions involving applications and production-test solutions. A few years ago, an RF applications engineer would be very focused in this very unique (often termed complex) field performing tests on discrete RF devices such as mixers, power amplifiers, low noise amplifiers, and RF switches. Times have changed. Today, we face increasing levels of integration, such that many of these discrete device functions are contained within one chip or module. Furthermore, the integration levels are such that RF chips contain lower-frequency analog functionality, as well as digital functionality (earlier RF devices often contained three-wire serial communications for controlling things such as gain control, but current digital is becoming more complex). Indeed, it would be more accurate, when referring to this new breed of engineers, to coin the term SOC engineer when discussing today’s wireless applications. Chapter 1 provides an overview of the many facets of production testing, with particular focus on the testing of RF and SOC devices. Many of the topics also directly work for other types of electronic device production testing. Additionally, the various capital expense items are covered, such as handlers, wafer probers, load boards, contactors, and so forth. There are not many general information application notes available on these topics, and this chapter is intended to bring them together to one location. Chapter 2 introduces the devices, both RF and SOC, that this book focuses on. A review of how the radio has evolved in wireless communications is presented. The superheterodyne radio and direct conversion (zero-if) architectures are discussed, as are their changes over time and their impact on testing. Lastly, an overview of the types of tests that are performed on each type of device is presented. Cost of test is reviewed in Chapter 3. An in-depth analysis is presented in this chapter with the intention to be a guide for those making decisions on how to implement final tests of devices. Note that this chapter, while presented in a book on RF testing, can be applied equally to any other type of electronic device or wafer testing. The intention is for this chapter to be useful to managers, sales teams, and applications engineers who go beyond the role of sitting behind the tester. Also presented in this chapter is a discussion of the traditional models of production test. Topics considered include the advantages and disadvantages of using third-party-testing integrated design manufacturers (IDMs) versus subcontract manufacturers (SCMs). An analytical tool will be presented for calculating cost of test, including many necessary components that are often overlooked when deciding how to perform production testing. Algorithms for production tests performed on discrete RF devices, as well as the front end of more highly integrated devices are presented in Chapter 4, the beginning of the handbook-type portion of this book. Detailed descriptions of the tests, as well as algorithms in both tabular and block diagram formats, are provided. xiv Preface Following the format of Chapter 4, Chapter 5 provides algorithms on measurements used with more highly integrated SOC devices. The tests discussed in this section are typical of those found in wireless communications. Chapter 6 is an introduction to many facets of mixed-signal testing. Common tests that are finding their way into SOC device production testing are explained. Chapter 7 covers new methods for improving the efficiency of production testing, taking it beyond simply performing the measurements faster. Concepts such as parallel and concurrent testing are presented. Chapter 8 is dedicated to the measurement of noise. Both noise figure and phase noise measurements are discussed. The intention of this chapter is to educate the engineer in what goes on behind the scenes of today’s easy-to-use noise figure analyzers and automated test equipment (ATE). Gone are the days when the engineer had to manually extract noise measurements, but it is important to understand the algorithms, which even today, within analyzers, effectively remain unchanged. There is further explanation on how to perform noise measurements in a production-test environment. Phase noise is also be considered and examined. Appendixes 4A, A, and B are included to cover the common items that every engineer is often running hastily to find from their notes. We look forward to helping to merge the worlds of RF and mixed-signal production testing. Keith Schaub Joe Kelly March 2004