论文研究-基于二维子空间的苹果病害识别方法.pdf

时间:2022-09-27 02:31:54
【文件属性】:

文件名称:论文研究-基于二维子空间的苹果病害识别方法.pdf

文件大小:942KB

文件格式:PDF

更新时间:2022-09-27 02:31:54

论文研究

如何准确、实时得到苹果病害信息是苹果病害管理的一个重要研究内容。根据苹果叶片症状准确、快速地诊断苹果病害是预防和控制苹果病害的基础。由于苹果同类病害叶片及其病斑图像的形状、颜色和纹理之间的差异很大,使得很多经典的模式识别方法不能有效地应用于苹果叶部病害识别。为此,提出了一种基于二维子空间学习维数约简(2DSLDR)的苹果病害识别方法。该方法将高维空间的观测样本点映射到低维子空间,使得类内样本点更加紧凑,而类间样本点更加分离,从而得到最佳的分类特征。该方法直接作用于叶片图像,不需要计算逆矩阵,从而克服了经典植物病害识别方法中特征提取与选择的难题,避免了经典子空间判别分析中的小样本问题,提高了识别效果。采用该方法对三种常见苹果叶部病害进行识别实验,并与其他苹果病害识别和监督流形学习方法进行比较。实验结果表明,2DSLDR对苹果叶部病害识别是有效可行的,识别精度高达90%以上。


网友评论