文件名称:论文研究-基于改进粒子群算法的变异体选择优化.pdf
文件大小:978KB
文件格式:PDF
更新时间:2022-08-11 11:56:59
软件测试,变异测试,变异体选择优化,粒子群优化算法
变异测试是常用的测试方法之一,变异测试分析的过程中计算开销会比较大,问题主要集中于测试过程中会产生大量的变异体。为了减少变异体的数量,提出用标准粒子群聚类算法进行选择优化,但标准粒子群算法在被测数据量增加到一定数量的时候,它的迭代次数就会增加、收敛速度就会下降。针对以上问题提出基于改进的粒子群算法对变异体进行选择优化。通过对变异体集合进行聚类分区,增强变异体集合的多态性,从而对粒子群算法进行改进优化。实验结果表明,在不影响测试充分度的前提下,使变异体的数量大幅度减少,同时与K-means算法以及标准粒子群算法相比之下,改进后的方法具有更好的优化效果。