文件名称:matlab多元参数非线性回归模型代码-ReadingKDNuggets:机器学习,大数据
文件大小:17.13MB
文件格式:ZIP
更新时间:2024-06-10 08:42:10
系统开源
matlab多元参数非线性回归模型代码阅读KDNuggets的注意事项 在从[ KDNuggets ]()阅读Blog时写了本笔记。 在本简要说明中,它仅包含我感兴趣但并不足够熟悉的术语和主题。 有关完整内容,请参阅原件。 聚类:旨在“最大化类内相似度并最小化类间相似度”的无监督学习技术。 两个关键部分:特征选择和期望最大化(EM) : 基于距离的方法:k均值和k中值 密度和基于网格的方法: 基于矩阵分解的方法:用于表示为稀疏非负矩阵的数据-共聚。 基于频谱的方法:使用定义的基础相似度矩阵 基于图的方法:通过将相似度矩阵转换为网络结构来对数据进行聚类。 大数据 大数据的六个Vs:数量,速度,多样性,准确性,可变性和价值。 机器学习 机器学习:与如何构建随经验而自动改善的计算机程序有关的问题。 关联:标识特定用户已选择的各个项目之间的关联。 强化学习:与在给定情况下寻找合适的动作以最大程度地获得奖励有关的问题。 深度学习 深度学习:不是万能药; 不是传说中的主算法; 不是人工智能的代名词。 这是应用深度神经网络技术解决问题的过程。 生物神经元(了解有关神经元和刺激激活的更多信息)。 核:
【文件预览】:
ReadingKDNuggets-master
----additional references()
--------KDD96-037.pdf(617KB)
--------ICA()
----README.md(11KB)