Bellman—Ford算法思想

时间:2023-03-08 18:09:22
Bellman—Ford算法思想

---恢复内容开始---

Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射。对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若存在负权回路,单源点最短路径问题无解;若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v]

Bellman—Ford算法流程
分为三个阶段:
      (1)初始化:将除源点外的所有顶点的最短距离估计值
         dis[v]ß+∞,dis[s]ß0;
      (2)迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集v中的每个顶点v的最短距离估计值逐步逼近其最短距离;
      (3)检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在dis[v]中。
【程序】
 {单源最短路径的Bellman-ford算法执行v-1次,每次对每条边进行松弛操作如有负权回路则输出"Error"}
const
maxn=;
maxe=maxn*(maxn-)div ;
type
edge=record
a,b,w :integer;
end;
var
edges :array[..maxe]of edge;
dis :array[..maxn]of integer;
pre :array[..maxn]of integer;
e,n,s :integer;
procedure init;
var
i :integer;
begin
e:=;
assign(input,'g.in');reset(input);
readln(n,s);
while not eof do
begin
inc(e);
with edges[e] do readln(a,b,w);
end;
fillchar(dis,sizeof(dis),$7f);//初始值为无穷大
dis[s]:=;pre[s]:=s;
end;
procedure relax(u,v,w:integer);
begin
if dis[u]+w<dis[v] then
begin
dis[v]:=dis[u]+w;
pre[v]:=u;
end
end;
function bellman_ford:boolean;
var
i,j :integer;
begin
for i:= to n- do
for j:= to e do
with edges[j] do relax(a,b,w);
for i:= to e do
with edges[i] do
if dis[a]+w<dis[b] then exit(false);
exit(true)
end;
procedure print_path(i:integer);
begin
if pre[i]<>s then print_path(pre[i]);
write('-->',i)
end;
procedure show;
var
i :integer;
begin
for i:= to n do
begin
write(i:,':',dis[i]:,':',s);
print_path(i);
writeln
end;
end;
{========main========}
begin
init;
if bellman_ford then show
else writeln('Error!!')
end.

---恢复内容结束---