吴裕雄 python深度学习与实践(6)

时间:2023-03-09 14:30:50
吴裕雄 python深度学习与实践(6)
from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
import numpy as np filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V")
summary = dataFile.describe()
dataFileNormalized = dataFile.iloc[:,1:6]
for i in range(1,6):
mean = summary.iloc[1, i]
sd = summary.iloc[2, i]
dataFileNormalized.iloc[:,(i-1)] = (dataFileNormalized.iloc[:,(i-1)] - mean) / sd
array = dataFileNormalized.values
print(np.shape(array))
boxplot(array)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

吴裕雄 python深度学习与实践(6)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot
filePath = ("c://dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") summary = dataFile.describe()
minRings = -1
maxRings = 99
nrows = 10
for i in range(nrows):
dataRow = dataFile.iloc[i,1:10]
labelColor = (dataFile.iloc[i,10] - minRings) / (maxRings - minRings)
dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

吴裕雄 python深度学习与实践(6)

import numpy as np
from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\dataTest.csv")
dataFile = pd.read_csv(filePath,header=None, prefix="V") corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr())
plot.pcolor(corMat)
plot.show()
print(np.shape(corMat))
print(corMat)

吴裕雄 python深度学习与实践(6)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath)
summary = dataFile.describe()
print(summary) array = dataFile.iloc[:,1:13].values
boxplot(array)
plot.xlabel("month")
plot.ylabel("rain")
show()

吴裕雄 python深度学习与实践(6)

吴裕雄 python深度学习与实践(6)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath) minRings = -1
maxRings = 99
nrows = 12
for i in range(nrows):
dataRow = dataFile.iloc[i,1:13]
labelColor = (dataFile.iloc[i,12] - minRings) / (maxRings - minRings)
dataRow.plot(color=plot.cm.RdYlBu(labelColor), alpha=0.5)
plot.xlabel("Attribute")
plot.ylabel("Score")
show()

吴裕雄 python深度学习与实践(6)

from pylab import *
import pandas as pd
import matplotlib.pyplot as plot filePath = ("G:\\MyLearning\\TensorFlow_deep_learn\\data\\rain.csv")
dataFile = pd.read_csv(filePath) corMat = pd.DataFrame(dataFile.iloc[1:20,1:20].corr()) plot.pcolor(corMat)
plot.show()

吴裕雄 python深度学习与实践(6)