吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

时间:2024-05-13 10:33:44

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 # 输入节点
OUTPUT_NODE = 10 # 输出节点
LAYER1_NODE = 500 # 隐藏层数 BATCH_SIZE = 100 # 每次batch打包的样本个数 # 模型相关的参数
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
# 不使用滑动平均类
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
return tf.matmul(layer1, weights2) + biases2 else:
# 使用滑动平均类
layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
# 生成隐藏层的参数。
weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
# 生成输出层的参数。
weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE])) # 计算不含滑动平均类的前向传播结果
y = inference(x, None, weights1, biases1, weights2, biases2) # 定义训练轮数及相关的滑动平均类
global_step = tf.Variable(0, trainable=False)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2) # 计算交叉熵及其平均值
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy) # 损失函数的计算
regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
regularaztion = regularizer(weights1) + regularizer(weights2)
loss = cross_entropy_mean + regularaztion # 设置指数衰减的学习率。
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True) # 优化损失函数
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # 反向传播更新参数和更新每一个参数的滑动平均值
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 计算正确率
correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 初始化会话,并开始训练过程。
with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels} # 循环的训练神经网络。
for i in range(TRAINING_STEPS):
if i % 1000 == 0:
validate_acc = sess.run(accuracy, feed_dict=validate_feed)
print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc)) xs,ys=mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x:xs,y_:ys}) test_acc=sess.run(accuracy,feed_dict=test_feed)
print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc))) def main(argv=None):
mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
train(mnist) if __name__=='__main__':
main()

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import os BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "MNIST_model/"
MODEL_NAME = "mnist_model" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run() for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step) def main(argv=None):
mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
train(mnist) if __name__ == '__main__':
main()

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_inference
import mnist_train # 加载的时间间隔。
EVAL_INTERVAL_SECS = 10 def evaluate(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} y = mnist_inference.inference(x, None)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore) while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(EVAL_INTERVAL_SECS) def main(argv=None):
mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
evaluate(mnist) if __name__ == '__main__':
main()

吴裕雄--天生自然python Google深度学习框架:MNIST数字识别问题