步骤1:构建语料库:
[python] view plain copy- #!/usr/bin/env python
- #-*-coding=utf-8-*-
- #数据源目录(二级目录)
- sourceDataDir='data'
- #数据源文件列表
- fileLists = []
- import os
- from gensim import corpora, models, similarities
- def getSourceFileLists(sourceDataDir):
- fileLists = []
- subDirList = os.listdir(sourceDataDir)
- for subDir in subDirList:
- subList = os.listdir(sourceDataDir + '/' + subDir)
- fileList = [ sourceDataDir+'/'+subDir+'/'+ x for x in subList if os.path.isfile(sourceDataDir+'/'+subDir+'/'+x)]
- fileLists += fileList
- return fileLists
- fileLists = getSourceFileLists(sourceDataDir)
- if 0 < len(fileLists):
- import codecs
- import jieba
- punctuations = ['','\n','\t',',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
- if not os.path.exists('dict'):
- os.mkdir("dict")
- if not os.path.exists('corpus'):
- os.mkdir("corpus")
- for fileName in fileLists:
- print fileName
- hFile = None
- content = None
- try:
- hFile = codecs.open(fileName,'r','gb18030')
- content = hFile.readlines()
- except Exception,e:
- print e
- finally:
- if hFile:
- hFile.close()
- if content:
- fileFenci = [ x for x in jieba.cut(' '.join(content),cut_all=True)]
- fileFenci2 = [word for word in fileFenci if not word in punctuations]
- texts = [fileFenci2]
- all_tokens = sum(texts, [])
- tokens_once = set(word for word in set(all_tokens) if all_tokens.count(word) == 1)
- texts = [[word for word in text if word not in tokens_once] for text in texts]
- sFileDir, sFileName = os.path.split(fileName)
- dictFileName = 'dict/'+sFileName+'.dict'
- corpusFileName = 'corpus/'+sFileName+'.mm'
- dictionary = corpora.Dictionary(texts)
- dictionary.save_as_text(dictFileName)
- corpus = ([dictionary.doc2bow(text) for text in texts])
- corpora.MmCorpus.serialize(corpusFileName, corpus)
- print 'Build corpus done'
数据源:
来自 http://d1.txthj.com/newrar/txthj_264.rar 的83篇小说,将其目录存放在目录 ./data/下。
加载时作为二层目录处理
输出:
./dict 和 ./corpus
在对应目录下生成 xxx.dict 和 xxx.mm,xxx为原文件的全称(不包括路径,包括后缀)
步骤2:加载语料库,相似性分析
[python] view plain copy- #!/usr/bin/env python
- #-*-coding=utf-8-*-
- import os
- from gensim import corpora, models, similarities
- def getFileList(dir):
- return [ dir + x for x in os.listdir(dir)]
- dictLists = getFileList('./dict/')
- class LoadDictionary(object):
- def __init__(self, dictionary):
- self.dictionary = dictionary
- def __iter__(self):
- for dictFile in dictLists:
- sFileRaw, sFilePostfix = os.path.splitext(dictFile)
- sFileDir, sFileName = os.path.split(sFileRaw)
- (dictFile, corpusFile) = ( './dict/' + sFileName + '.dict', './corpus/'+sFileName + '.mm')
- yield self.dictionary.load_from_text(dictFile)
- class LoadCorpus(object):
- def __iter__(self):
- for dictFile in dictLists:
- sFileRaw, sFilePostfix = os.path.splitext(dictFile)
- sFileDir, sFileName = os.path.split(sFileRaw)
- (dictFile, corpusFile) = ( './dict/' + sFileName + '.dict', './corpus/'+sFileName + '.mm')
- yield corpora.MmCorpus(corpusFile)
- """
- 预处理(easy_install nltk)
- """
- #简化的 中文+英文 预处理
- def pre_process_cn(inputs, low_freq_filter = True):
- """
- 1.去掉停用词
- 2.去掉标点符号
- 3.处理为词干
- 4.去掉低频词
- """
- import nltk
- import jieba.analyse
- from nltk.tokenize import word_tokenize
- texts_tokenized = []
- for document in inputs:
- texts_tokenized_tmp = []
- for word in word_tokenize(document):
- texts_tokenized_tmp += jieba.analyse.extract_tags(word,10)
- texts_tokenized.append(texts_tokenized_tmp)
- texts_filtered_stopwords = texts_tokenized
- #去除标点符号
- english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '&', '!', '*', '@', '#', '$', '%']
- texts_filtered = [[word for word in document if not word in english_punctuations] for document in texts_filtered_stopwords]
- #词干化
- from nltk.stem.lancaster import LancasterStemmer
- st = LancasterStemmer()
- texts_stemmed = [[st.stem(word) for word in docment] for docment in texts_filtered]
- #去除过低频词
- if low_freq_filter:
- all_stems = sum(texts_stemmed, [])
- stems_once = set(stem for stem in set(all_stems) if all_stems.count(stem) == 1)
- texts = [[stem for stem in text if stem not in stems_once] for text in texts_stemmed]
- else:
- texts = texts_stemmed
- return texts
- dictionary = corpora.dictionary.Dictionary()
- dictionary_memory_friendly = LoadDictionary(dictionary)
- for vector in dictionary_memory_friendly:
- dictionary = vector
- corpus = []
- corpus_memory_friendly = LoadCorpus()
- for vector in corpus_memory_friendly:
- corpus.append(vector[0])
- if 0 < len(corpus):
- tfidf = models.TfidfModel(corpus)
- corpus_tfidf = tfidf[corpus]
- model = models.LsiModel(corpus_tfidf, id2word=None, num_topics=20, chunksize=2000000) #不指定 id2word=dictionary 时,LsiModel内部会根据 corpus 重建 dictionary
- index = similarities.Similarity('./novel_', model[corpus], num_features=len(corpus))
- #要处理的对象登场,这里随便从小说中截取了一段话
- target_courses = ['男人们的脸上沉重而冷凝,蒙着面纱的女人们则是发出断断续续的哭泣声,他们无比专注地看着前方,见证一场生与死的拉锯战。']
- target_text = pre_process_cn(target_courses, low_freq_filter=False)
- """
- 对具体对象相似度匹配
- """
- #选择一个基准数据
- ml_course = target_text[0]
- #词袋处理
- ml_bow = dictionary.doc2bow(ml_course)
- #在上面选择的模型数据 lsi model 中,计算其他数据与其的相似度
- ml_lsi = model[ml_bow] #ml_lsi 形式如 (topic_id, topic_value)
- sims = index[ml_lsi] #sims 是最终结果了, index[xxx] 调用内置方法 __getitem__() 来计算ml_lsi
- #排序,为输出方便
- sort_sims = sorted(enumerate(sims), key=lambda item: -item[1])
- #查看结果
- print sort_sims[0:10]
- print len(dictLists)
- print dictLists[sort_sims[1][0]]
- print dictLists[sort_sims[2][0]]
- print dictLists[sort_sims[3][0]]
说明:
yield的使用是为了更好的内存效率。
遗留问题:
步骤2会有提示:
/usr/lib/python2.7/dist-packages/scipy/sparse/compressed.py:122: UserWarning: indices array has non-integer dtype (float64)
不影响处理过程