Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 17171 | Accepted: 11999 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
#include <iostream>
#include <cstddef>
#include <cstring>
#include <vector> using namespace std; typedef long long ll;
const int mod=;
typedef vector<ll> vec;
typedef vector <vec> mat; mat mul(mat &a,mat &b)
{
mat c(a.size(),vec(b[].size()));
for(int i=;i<;i++)
for(int j=;j<;j++)
for(int k=;k<;k++){
c[i][j]+=a[i][k]*b[k][j];
c[i][j]%=mod;
}
return c;
} mat Pow(mat a,ll n)
{
mat res(a.size(),vec(a.size()));
for(int i=;i<a.size();i++)
res[i][i]=;
while(n)
{
if(n&)
res=mul(res,a);
a=mul(a,a);
n/=;
}
return res;
} ll solve(ll n)
{
mat a(,vec());
a[][]=;
a[][]=;
a[][]=;
a[][]=;
a=Pow(a,n);
return a[][];
} int main()
{
ll n;
while(cin>>n&&n!=-)
{
cout<<solve(n)<<endl;
}
}
斐波那契快速幂