洛谷P1962 斐波那契数列(矩阵快速幂)

时间:2021-03-29 19:27:15

题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列:

• f(1) = 1

• f(2) = 1

• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)

题目描述

请你求出 f(n) mod 1000000007 的值。

输入输出格式

输入格式:

·第 1 行:一个整数 n

输出格式:

第 1 行: f(n) mod 1000000007 的值

输入输出样例

输入样例#1: 复制
5
输出样例#1: 复制
5
输入样例#2: 复制
10
输出样例#2: 复制
55

说明

对于 60% 的数据: n ≤ 92

对于 100% 的数据: n在long long(INT64)范围内。

感觉自己学的一直是假的矩阵快速幂。。。

辅助矩阵为

$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

#include<cstdio>
#include<cstring>
#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=;
const int mod=1e9+;
char buf[<<],*p1=buf,*p2=buf;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,k;
struct Matrix
{
int m[MAXN][MAXN];
Matrix operator * (const Matrix a)const
{
Matrix ans={};
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans.m[i][j]=(ans.m[i][j]+(m[i][k]*a.m[k][j])%mod)%mod;
return ans;
}
Matrix pow(int p)
{
Matrix ans,a=(*this);
for(int i=;i<=n;i++) ans.m[i][i]=;
while(p)
{
if(p&) ans=ans*a;
a=a*a;
// a.print();
p>>=;
}
return ans;
}
void print()
{
for(int i=;i<=n;i++,puts(""))
for(int j=;j<=n;j++)
printf("%d ",m[i][j]);
printf("*******************\n");
}
};
main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
k=read();n=;
Matrix temp,ans;
temp.m[][]=;temp.m[][]=;
temp.m[][]=;temp.m[][]=;
ans.m[][]=;ans.m[][]=;
ans.m[][]=;ans.m[][]=;
temp=temp.pow(k);
ans=ans*temp;
printf("%d",ans.m[][]);
return ;
}