10 张图打开 CPU 缓存一致性的大门

时间:2022-08-10 19:22:38
10 张图打开 CPU 缓存一致性的大门

前言

直接上,不多 BB 了。

10 张图打开 CPU 缓存一致性的大门


正文

CPU Cache 的数据写入

随着时间的推移,CPU 和内存的访问性能相差越来越大,于是就在 CPU 内部嵌入了 CPU Cache(高速缓存),CPU Cache 离 CPU 核心相当近,因此它的访问速度是很快的,于是它充当了 CPU 与内存之间的缓存角色。

CPU Cache 通常分为三级缓存:L1 Cache、L2 Cache、L3 Cache,级别越低的离 CPU 核心越近,访问速度也快,但是存储容量相对就会越小。其中,在多核心的 CPU 里,每个核心都有各自的 L1/L2 Cache,而 L3 Cache 是所有核心共享使用的。

10 张图打开 CPU 缓存一致性的大门

我们先简单了解下 CPU Cache 的结构,CPU Cache 是由很多个 Cache Line 组成的,CPU Line 是 CPU 从内存读取数据的基本单位,而 CPU Line 是由各种标志(Tag)+ 数据块(Data Block)组成,你可以在下图清晰的看到:

10 张图打开 CPU 缓存一致性的大门

我们当然期望 CPU 读取数据的时候,都是尽可能地从 CPU Cache 中读取,而不是每一次都要从内存中获取数据。所以,身为程序员,我们要尽可能写出缓存命中率高的代码,这样就有效提高程序的性能,具体的做法,你可以参考我上一篇文章「如何写出让 CPU 跑得更快的代码?」

事实上,数据不光是只有读操作,还有写操作,那么如果数据写入 Cache 之后,内存与 Cache 相对应的数据将会不同,这种情况下 Cache 和内存数据都不一致了,于是我们肯定是要把 Cache 中的数据同步到内存里的。

问题来了,那在什么时机才把 Cache 中的数据写回到内存呢?为了应对这个问题,下面介绍两种针对写入数据的方法:

  • 写直达(Write Through
  • 写回(Write Back

写直达

保持内存与 Cache 一致性最简单的方式是,把数据同时写入内存和 Cache 中,这种方法称为写直达(Write Through

10 张图打开 CPU 缓存一致性的大门

在这个方法里,写入前会先判断数据是否已经在 CPU Cache 里面了:

  • 如果数据已经在 Cache 里面,先将数据更新到 Cache 里面,再写入到内存里面;
  • 如果数据没有在 Cache 里面,就直接把数据更新到内存里面。

写直达法很直观,也很简单,但是问题明显,无论数据在不在 Cache 里面,每次写操作都会写回到内存,这样写操作将会花费大量的时间,无疑性能会受到很大的影响。

写回

既然写直达由于每次写操作都会把数据写回到内存,而导致影响性能,于是为了要减少数据写回内存的频率,就出现了写回(Write Back)的方法

在写回机制中,当发生写操作时,新的数据仅仅被写入 Cache Block 里,只有当修改过的 Cache Block「被替换」时才需要写到内存中,减少了数据写回内存的频率,这样便可以提高系统的性能。

10 张图打开 CPU 缓存一致性的大门

那具体如何做到的呢?下面来详细说一下:

  • 如果当发生写操作时,数据已经在 CPU Cache 里的话,则把数据更新到 CPU Cache 里,同时标记 CPU Cache 里的这个 Cache Block 为脏(Dirty)的,这个脏的标记代表这个时候,我们 CPU Cache 里面的这个 Cache Block 的数据和内存是不一致的,这种情况是不用把数据写到内存里的;
  • 如果当发生写操作时,数据所对应的 Cache Block 里存放的是「别的内存地址的数据」的话,就要检查这个 Cache Block 里的数据有没有被标记为脏的,如果是脏的话,我们就要把这个 Cache Block 里的数据写回到内存,然后再把当前要写入的数据,写入到这个 Cache Block 里,同时也把它标记为脏的;如果 Cache Block 里面的数据没有被标记为脏,则就直接将数据写入到这个 Cache Block 里,然后再把这个 Cache Block 标记为脏的就好了。

可以发现写回这个方法,在把数据写入到 Cache 的时候,只有在缓存不命中,同时数据对应的 Cache 中的 Cache Block 为脏标记的情况下,才会将数据写到内存中,而在缓存命中的情况下,则在写入后 Cache 后,只需把该数据对应的 Cache Block 标记为脏即可,而不用写到内存里。

这样的好处是,如果我们大量的操作都能够命中缓存,那么大部分时间里 CPU 都不需要读写内存,自然性能相比写直达会高很多。


缓存一致性问题

现在 CPU 都是多核的,由于 L1/L2 Cache 是多个核心各自独有的,那么会带来多核心的缓存一致性(Cache Coherence 的问题,如果不能保证缓存一致性的问题,就可能造成结果错误。

那缓存一致性的问题具体是怎么发生的呢?我们以一个含有两个核心的 CPU 作为例子看一看。

假设 A 号核心和 B 号核心同时运行两个线程,都操作共同的变量 i(初始值为 0 )。

10 张图打开 CPU 缓存一致性的大门

这时如果 A 号核心执行了 i++ 语句的时候,为了考虑性能,使用了我们前面所说的写回策略,先把值为 1 的执行结果写入到 L1/L2 Cache 中,然后把 L1/L2 Cache 中对应的 Block 标记为脏的,这个时候数据其实没有被同步到内存中的,因为写回策略,只有在 A 号核心中的这个 Cache Block 要被替换的时候,数据才会写入到内存里。

如果这时旁边的 B 号核心尝试从内存读取 i 变量的值,则读到的将会是错误的值,因为刚才 A 号核心更新 i 值还没写入到内存中,内存中的值还依然是 0。这个就是所谓的缓存一致性问题,A 号核心和 B 号核心的缓存,在这个时候是不一致,从而会导致执行结果的错误。

10 张图打开 CPU 缓存一致性的大门

那么,要解决这一问题,就需要一种机制,来同步两个不同核心里面的缓存数据。要实现的这个机制的话,要保证做到下面这 2 点:

  • 第一点,某个 CPU 核心里的 Cache 数据更新时,必须要传播到其他核心的 Cache,这个称为写传播(Wreite Propagation
  • 第二点,某个 CPU 核心里对数据的操作顺序,必须在其他核心看起来顺序是一样的,这个称为事务的串形化(Transaction Serialization

第一点写传播很容易就理解,当某个核心在 Cache 更新了数据,就需要同步到其他核心的 Cache 里。而对于第二点事务事的串形化,我们举个例子来理解它。

假设我们有一个含有 4 个核心的 CPU,这 4 个核心都操作共同的变量 i(初始值为 0 )。A 号核心先把 i 值变为 100,而此时同一时间,B 号核心先把 i 值变为 200,这里两个修改,都会「传播」到 C 和 D 号核心。

10 张图打开 CPU 缓存一致性的大门

那么问题就来了,C 号核心先收到了 A 号核心更新数据的事件,再收到 B 号核心更新数据的事件,因此 C 号核心看到的变量 i 是先变成 100,后变成 200。

而如果 D 号核心收到的事件是反过来的,则 D 号核心看到的是变量 i 先变成 200,再变成 100,虽然是做到了写传播,但是各个 Cache 里面的数据还是不一致的。

所以,我们要保证 C 号核心和 D 号核心都能看到相同顺序的数据变化,比如变量 i 都是先变成 100,再变成 200,这样的过程就是事务的串形化。

要实现事务串形化,要做到 2 点:

  • CPU 核心对于 Cache 中数据的操作,需要同步给其他 CPU 核心;
  • 要引入「锁」的概念,如果两个 CPU 核心里有相同数据的 Cache,那么对于这个 Cache 数据的更新,只有拿到了「锁」,才能进行对应的数据更新。

那接下来我们看看,写传播和事务串形化具体是用什么技术实现的。


总线嗅探

写传播的原则就是当某个 CPU 核心更新了 Cache 中的数据,要把该事件广播通知到其他核心。最常见实现的方式是总线嗅探(Bus Snooping

我还是以前面的 i 变量例子来说明总线嗅探的工作机制,当 A 号 CPU 核心修改了 L1 Cache 中 i 变量的值,通过总线把这个事件广播通知给其他所有的核心,然后每个 CPU 核心都会监听总线上的广播事件,并检查是否有相同的数据在自己的 L1 Cache 里面,如果 B 号 CPU 核心的 L1 Cache 中有该数据,那么也需要把该数据更新到自己的 L1 Cache。

可以发现,总线嗅探方法很简单, CPU 需要每时每刻监听总线上的一切活动,但是不管别的核心的 Cache 是否缓存相同的数据,都需要发出一个广播事件,这无疑会加重总线的负载。

另外,总线嗅探只是保证了某个 CPU 核心的 Cache 更新数据这个事件能被其他 CPU 核心知道,但是并不能保证事务串形化。

于是,有一个协议基于总线嗅探机制实现了事务串形化,也用状态机机制降低了总线带宽压力,这个协议就是 MESI 协议,这个协议就做到了 CPU 缓存一致性。


MESI 协议

MESI 协议其实是 4 个状态单词的开头字母缩写,分别是:

  • Modified,已修改
  • Exclusive,独占
  • Shared,共享
  • Invalidated,已失效

这四个状态来标记 Cache Line 四个不同的状态。

「已修改」状态就是我们前面提到的脏标记,代表该 Cache Block 上的数据已经被更新过,但是还没有写到内存里。而「已失效」状态,表示的是这个 Cache Block 里的数据已经失效了,不可以读取该状态的数据。

「独占」和「共享」状态都代表 Cache Block 里的数据是干净的,也就是说,这个时候 Cache Block 里的数据和内存里面的数据是一致性的。

「独占」和「共享」的差别在于,独占状态的时候,数据只存储在一个 CPU 核心的 Cache 里,而其他 CPU 核心的 Cache 没有该数据。这个时候,如果要向独占的 Cache 写数据,就可以直接*地写入,而不需要通知其他 CPU 核心,因为只有你这有这个数据,就不存在缓存一致性的问题了,于是就可以随便操作该数据。

另外,在「独占」状态下的数据,如果有其他核心从内存读取了相同的数据到各自的 Cache ,那么这个时候,独占状态下的数据就会变成共享状态。

那么,「共享」状态代表着相同的数据在多个 CPU 核心的 Cache 里都有,所以当我们要更新 Cache 里面的数据的时候,不能直接修改,而是要先向所有的其他 CPU 核心广播一个请求,要求先把其他核心的 Cache 中对应的 Cache Line 标记为「无效」状态,然后再更新当前 Cache 里面的数据。

我们举个具体的例子来看看这四个状态的转换:

  1. 当 A 号 CPU 核心从内存读取变量 i 的值,数据被缓存在 A 号 CPU 核心自己的 Cache 里面,此时其他 CPU 核心的 Cache 没有缓存该数据,于是标记 Cache Line 状态为「独占」,此时其 Cache 中的数据与内存是一致的;
  2. 然后 B 号 CPU 核心也从内存读取了变量 i 的值,此时会发送消息给其他 CPU 核心,由于 A 号 CPU 核心已经缓存了该数据,所以会把数据返回给 B 号 CPU 核心。在这个时候, A 和 B 核心缓存了相同的数据,Cache Line 的状态就会变成「共享」,并且其 Cache 中的数据与内存也是一致的;
  3. 当 A 号 CPU 核心要修改 Cache 中 i 变量的值,发现数据对应的 Cache Line 的状态是共享状态,则要向所有的其他 CPU 核心广播一个请求,要求先把其他核心的 Cache 中对应的 Cache Line 标记为「无效」状态,然后 A 号 CPU 核心才更新 Cache 里面的数据,同时标记 Cache Line 为「已修改」状态,此时 Cache 中的数据就与内存不一致了。
  4. 如果 A 号 CPU 核心「继续」修改 Cache 中 i 变量的值,由于此时的 Cache Line 是「已修改」状态,因此不需要给其他 CPU 核心发送消息,直接更新数据即可。
  5. 如果 A 号 CPU 核心的 Cache 里的 i 变量对应的 Cache Line 要被「替换」,发现 Cache Line 状态是「已修改」状态,就会在替换前先把数据同步到内存。

所以,可以发现当 Cache Line 状态是「已修改」或者「独占」状态时,修改更新其数据不需要发送广播给其他 CPU 核心,这在一定程度上减少了总线带宽压力。

事实上,整个 MESI 的状态可以用一个有限状态机来表示它的状态流转。还有一点,对于不同状态触发的事件操作,可能是来自本地 CPU 核心发出的广播事件,也可以是来自其他 CPU 核心通过总线发出的广播事件。下图即是 MESI 协议的状态图:

10 张图打开 CPU 缓存一致性的大门

MESI 协议的四种状态之间的流转过程,我汇总成了下面的表格,你可以更详细的看到每个状态转换的原因:

10 张图打开 CPU 缓存一致性的大门


总结

CPU 在读写数据的时候,都是在 CPU Cache 读写数据的,原因是 Cache 离 CPU 很近,读写性能相比内存高出很多。对于 Cache 里没有缓存 CPU 所需要读取的数据的这种情况,CPU 则会从内存读取数据,并将数据缓存到 Cache 里面,最后 CPU 再从 Cache 读取数据。

而对于数据的写入,CPU 都会先写入到 Cache 里面,然后再在找个合适的时机写入到内存,那就有「写直达」和「写回」这两种策略来保证 Cache 与内存的数据一致性:

  • 写直达,只要有数据写入,都会直接把数据写入到内存里面,这种方式简单直观,但是性能就会受限于内存的访问速度;
  • 写回,对于已经缓存在 Cache 的数据的写入,只需要更新其数据就可以,不用写入到内存,只有在需要把缓存里面的脏数据交换出去的时候,才把数据同步到内存里,这种方式在缓存命中率高的情况,性能会更好;

当今 CPU 都是多核的,每个核心都有各自独立的 L1/L2 Cache,只有 L3 Cache 是多个核心之间共享的。所以,我们要确保多核缓存是一致性的,否则会出现错误的结果。

要想实现缓存一致性,关键是要满足 2 点:

  • 第一点是写传播,也就是当某个 CPU 核心发生写入操作时,需要把该事件广播通知给其他核心;
  • 第二点是事物的串行化,这个很重要,只有保证了这个,次啊能保障我们的数据是真正一致的,我们的程序在各个不同的核心上运行的结果也是一致的;

基于总线嗅探机制的 MESI 协议,就满足上面了这两点,因此它是保障缓存一致性的协议。

MESI 协议,是已修改、独占、共享、已实现这四个状态的英文缩写的组合。整个 MSI 状态的变更,则是根据来自本地 CPU 核心的请求,或者来自其他 CPU 核心通过总线传输过来的请求,从而构成一个流动的状态机。另外,对于在「已修改」或者「独占」状态的 Cache Line,修改更新其数据不需要发送广播给其他 CPU 核心。


说几句

10 张图打开 CPU 缓存一致性的大门

哈喽,我是小林,就爱图解计算机基础,如果觉得文章对你有帮助,欢迎分享给你的朋友,也给小林点个「赞」,这对小林非常重要,谢谢你们,给各位小姐姐小哥哥们抱拳了,我们下次见!


推荐阅读

面试官:如何写出让 CPU 跑得更快的代码?

读者问:小林你的 500 张图是怎么画的?