Given an array of integers, the majority number is the number that occurs more than 1/3 of the size of the array. Find it. Note
There is only one majority number in the array Example
For [1, 2, 1, 2, 1, 3, 3] return 1 Challenge
O(n) time and O(1) space
三三抵销法,但是也有需要注意的地方:
1. 我们对cnt1,cnt2减数时,相当于丢弃了3个数字(当前数字,candidate1, candidate2)。也就是说,每一次丢弃数字,我们是丢弃3个不同的数字。
而Majority number超过了1/3所以它最后一定会留下来。
设定总数为N, majority number次数为m。丢弃的次数是x。则majority 被扔的次数是x
而m > N/3, N - 3x > 0.
3m > N, N > 3x 所以 3m > 3x, m > x 也就是说 m一定没有被扔完
最坏的情况,Majority number每次都被扔掉了,但它一定会在n1,n2中。
2. 为什么最后要再检查2个数字呢(从头开始统计,而不用剩下的count1, count2)?因为数字的编排可以让majority 数被过度消耗,使其计数反而小于n2,或者等于n2.前面举的例子即是。
另一个例子:
1 1 1 1 2 3 2 3 4 4 4 这个 1就会被消耗过多,最后余下的反而比4少。
public class Solution {
/**
* @param nums: A list of integers
* @return: The majority number that occurs more than 1/3
*/
public int majorityNumber(ArrayList<Integer> nums) {
// write your code
int candidate1 = 0;
int candidate2 = 0;
int count1 = 0;
int count2 = 0;
for (int elem : nums) {
if (count1 == 0) {
candidate1 = elem;
}
if (count2 == 0 && elem != candidate1) {
candidate2 = elem;
}
if (candidate1 == elem) {
count1++;
}
if (candidate2 == elem) {
count2++;
}
if (candidate1 != elem && candidate2 != elem) {
count1--;
count2--;
}
} count1 = 0;
count2 = 0;
for (int elem : nums) {
if (elem == candidate1) count1++;
else if (elem == candidate2) count2++;
}
return count1>count2? candidate1 : candidate2;
}
}