Given an array A
of integers, return the number of (contiguous, non-empty) subarrays that have a sum divisible by K
.
Example 1:
Input: A = [4,5,0,-2,-3,1], K = 5
Output: 7
Explanation: There are 7 subarrays with a sum divisible by K = 5:
[4, 5, 0, -2, -3, 1], [5], [5, 0], [5, 0, -2, -3], [0], [0, -2, -3], [-2, -3]
Note:
1 <= A.length <= 30000
-10000 <= A[i] <= 10000
2 <= K <= 10000
Idea 1. prefix sums + HashMap + modular rules, note: count[0] = 1, (X + X%K)%K for negative values
Time complexity: O(n)
Space complexity: O(K)
class Solution {
public int subarraysDivByK(int[] A, int K) {
int[] count = new int[K];
count[0] = 1;
int prefixSum = 0; int result = 0;
for(int a: A) {
prefixSum += a;
prefixSum = (prefixSum % K + K)%K;
result += count[prefixSum];
++count[prefixSum];
} return result;
}
}
Idea 1.a count pairs
class Solution {
public int subarraysDivByK(int[] A, int K) {
int[] count = new int[K];
count[0] = 1;
int prefixSum = 0; for(int a: A) {
prefixSum += a;
prefixSum = (prefixSum % K + K)%K;
++count[prefixSum];
} int result = 0;
for(int val: count) {
result += val*(val-1)/2;
} return result;
}
}