一、Android热插拔事件处理流程图
Android热插拔事件处理流程如下图所示:
二、组成
1. NetlinkManager:
全称是NetlinkManager.cpp位于Android 4.x 源码位置/system/vold/NetlinkManager.cpp。该类的主要通过引用NetlinkHandler类中的onEvent()方法来接收来自内核的事件消息,NetlinkHandler位于/system/vold/NetlinkHandler.cpp。
2. VolumeManager:
全称是VolumeManager.cpp位于Android 4.x源码位置/system/vold/VolumeManager.cpp。该类的主要作用是接收经过NetlinkManager处理过后的事件消息。因为我们这里是SD的挂载,因此经过NetlinkManager处理过后的消息会分为五种,分别是:block,switch,usb_composite,battery,power_supply。这里SD卡挂载的事件是block。
3. DirectVolume:
位于/system/vold/DirectVolume.cpp。该类的是一个工具类,主要负责对传入的事件进行进一步的处理,block事件又可以分为:Add,Removed,Change,Noaction这四种。后文通过介绍Add事件展开。
4. Volume:
位于/system/vold/Volume.cpp,该类是负责SD卡挂载的主要类。Volume.cpp主要负责检查SD卡格式,以及对复合要求的SD卡进行挂载,并通过Socket将消息SD卡挂载的消息传递给NativeDaemonConnector。
5. CommandListener:
该类位于位于/system/vold/CommandListener.cpp。通过vold socket与NativeDaemonConnector通信。
6. NativeDaemonConnector:
该类位于frameworks/base/services/java/com.android.server/NativeDaemonConnector.java。该类用于接收来自Volume.cpp 发来的SD卡挂载消息并向上传递。
7. MountService:
位于frameworks/base/services/java/com.android.server/MountService.java。MountService是一个服务类,该服务是系统服务,提供对外部存储设备的管理、查询等。在外部存储设备状态发生变化的时候,该类会发出相应的通知给上层应用。在Android系统中这是一个非常重要的类。
8. StorageManaer:
位于frameworks/base/core/java/andriod/os/storage/StorageManager.java。在该类的说明中有提到,该类是系统存储服务的接口。在系统设置中,有Storage相关项,同时Setting也注册了该类的监听器。而StorageManager又将自己的监听器注册到了MountService中,因此该类主要用于上层应用获取SD卡状态。
三、典型流程描述 (SD卡挂载流程)
整个过程从Kernel检测到SD卡插入事件开始,之前的一些硬件中断的触发以及driver的加载这里并不叙述,一直到SD卡挂载消息更新到“Android——系统设置——存储”一项中。
1. Kernel发出SD卡插入uevent。
2. NetlinkHandler::onEvent()接收内核发出的uevent并进行解析。
3. VolumeManager::handlBlockEvent()处理经过第二步处理后的事件。
4. 接下来调用DirectVolume:: handleBlockEvent()。
在该方法中主要有两点需要注意:
第一,程序首先会遍历mPath容器,寻找与event对应的sysfs_path是否存在与mPath容器中。
第二,针对event中的action有4种处理方式:Add,Removed,Change,Noaction 。
例如:在Add action中会有如下操作(因为我们这里所讲的是SD卡的挂载流程,因此以Add来说明),首先创建设备节点,其次对disk和partition两种格式的设备分别进行处理。SD卡属于disk类型。
5. 经过上一步之后会调用DirectVolume::handleDiskAdded()方法,在该方法中会广播disk insert消息。
6. SocketListener::runListener会接收DirectVolume::handleDiskAdded()广播的消息。该方法主要完成对event中数据的获取,通过Socket。(PS:这里的SocketListener.cpp位于Android源码/system/core/libsysutils/src/中,后文的FramworkListener.cpp也是,之前自己找了很久 T_T)
7. 调用FrameworkListener::onDataAvailable()方法处理接收到的消息内容。
8. FrameworkListener::dispatchCommand()该方法用于分发指令。
9. 在FrameworkListener::dispatchCommand()方法中,通过runCommand()方法去调用相应的指令。
10. 在/system/vold/CommandListener.cpp中有runCommand()的具体实现。在该类中可以找到这个方法:CommandListener::VolumeCmd::runCommand(),从字面意思上来看这个方法就是对Volume分发指令的解析。该方法中会执行“mount”函数:vm->mountVolume(arg[2])。
11. mountVolume(arg[2])在VolumeManager::mountVolume()中实现,在该方法中调用v->mountVol()。
12. mountVol()方法在Volume::mountVol()中实现,该函数是真正的挂载函数。(在该方法中,后续的处理都在该方法中,在Mount过程中会广播相应的消息给上层,通过setState()函数。)
13. setState(Volume::Checking);广播给上层,正在检查SD卡,为挂载做准备。
14. Fat::check();SD卡检查方法,检查SD卡是否是FAT格式。
15. Fat::doMount()挂载SD卡。
至此,SD的挂载已算初步完成,接下来应该将SD卡挂载后的消息发送给上层,在13中也提到过,在挂载以及检查的过程中其实也有发送消息给上层的。
16. MountService的构造函数中会开启监听线程,用于监听来自vold的socket信息。
Thread thread = new Thread(mConnector,VOLD_TAG); thread.start();
17. mConnector是NativeDaemonConnector的对象,NativeDaemonConnector继承了Runnable并Override了run方法。在run方法中通过一个while(true)调用ListenToSocket()方法来实现实时监听。
18. 在ListenToSocket()中,首先建立与Vold通信的Socket Server端,然后调用MountService中的onDaemonConnected()方法。(PS:Java与Native通信可以通过JNI,那么Native与Java通信就需要通过Socket来实现了。Android中Native与Frameworks通信 这篇文章中有简介,感兴趣的朋友可以参考一下)
19. onDaemonConnected()方法是在接口INativeDaemonConnectorCallbacks中定义的,MountService实现了该接口并Override了onDaemonConnected()方法。该方法开启一个线程用于更新外置存储设备的状态,主要更新状态的方法也在其中实现。
20. 然后回到ListenToSocket中,通过inputStream来获取Vold传递来的event,并存放在队列中。
21. 然后这些event会在onDaemonConnected()通过队列的”队列.take()”方法取出。并根据不同的event调用updatePublicVolumeState()方法,在该方法中调用packageManagerService中的updateExteralState()方法来更新存储设备的状态。(注:这里不太理解packageManagerService中的unloadAllContainers(args)方法)
22. 更新是通过packageHelper.getMountService().finishMediaUpdate()方法来实现的。
23. 在updatePublicVolumeState()方法中,更新后会执行如下代码:
bl.mListener.onStorageStateChanged();
在Android源码/packages/apps/Settings/src/com.android.settings.deviceinfo/Memory.java代码中,实现了StorageEventListener 的匿名内部类,并Override了onStorageStateChanged();方法。因此在updatePublicVolumeState()中调用onStorageStateChanged();方法后,Memory.java中也会收到。在Memory.java中收到以后会在Setting界面进行更新,系统设置——存储中会更新SD卡的状态。从而SD卡的挂载从底层到达了上层。
四、Vold
1. Vold简介
Vold的全称是volume daemon。主要负责系统对大容量存储设备(USB/SD)的挂载/卸载任务,它是一个守护进程,该进程支持这些存储外设的热插拔。自Android 2.2开始,Vold升级为vold 2.0,配置文件路径在Android 4.0之后变为/etc/vold.fstab。
2.Vold工作流程
Vold的工作流程大致可以分为三个部分:创建监听、引导、事件处理。
(1)创建监听
创建监听指的是创建监听链接,一方面用于监听来自内核的uevent,另一方面用于监听来自上层的控制命令,这些命令包括控制SD卡的挂载与卸载,这里所说的链接也就是socket。在Android 系统启动的时候,init进程会去解析init.rc文件,在该文件中,有如下代码:
Service vold /system/bin/vold
Socket vold stream 0660 root mount
Iprio be 2
这样系统会在启动的时候创建与上层通信的socket,此socket name为"vold"。
在Android 4.0源码/system/vold路径下的main.cpp<NetlinkManager::start():socket(PF_NETLINK,SOCK_DGRAM,NETLINK_KOBJECT_UEVENT) >中创建了与内核通信的socket。在main.cpp中通过实例化VolumeManager和NetlinkManager时创建。
(2)引导
Vold进程启动时候会对现有的外部存储设备进行检查。首先加载并解析vold.fstab,并检查挂载点是否已被挂载。然后执行SD卡的挂载,最后处理USB大容量存储。因为系统是按行解析的,通过查看vold.fstab可以很清楚的知道这一点。
vold.fatab中最重要的语句:
dev_mount sdcard /mnt/sdcard auto /devices/platform/rk29_sdmmc.0/mmc_host/mmc0
dev_mount <lable> <mount_point> <part> <sysfs_path…>
挂载命令 标签 挂载点 第几个分区 设备的sysfs paths
注:
第几个分区:如果为auto则表示第1个分区。
参数之间不能有空格,只能以tab为间隔(注意:这里为了对齐因此采用空格隔开,如果自行修改vold.fstab之后加以空格的话系统会识别不到的)。
如果vold.fstab解析无误,VolueManager将创建DirectVolume,若vold.fstab解析不存在或者打开失败,Vold将会读取Linux内核中的参数,此时如果参数中存在SDCARD(也就是SD的默认路径),VolumeManager则会创建AutoVolume,如果不存在这个默认路径那么就不会创建。
(3)事件处理
通过对两个socket的监听,完成对事件的处理以及对上层应用的响应。
a) Kernel发出uevent
NetlinkManager检测到kernel发出的uevent,解析后调用NetlinkHandler::onEvent()方法。该方法会分别处理不同的事件,这里重要的事件有:
“block”事件主要指Volume的mount、unmount、createAsec等。由VolumeManager的handleBlockEvent(evt)来处理,根据多态性最终将会调用AutoVolume或者DirectVolume的handleBlockEvent方法来处理。
“switch”事件主要指Volume的connet、disconnet等。根据相关操作,改变设备参数(设备类型、挂载点等)通过CommandListener告知FrameWork层。
b) FrameWork发出控制命令
与a)相反,CommandListener检测到FrameWork层的命令(MountService发出的命令)调用VolumeManager的函数,VolumeManager找出对应的Volume,调用Volume函数去挂载/卸载操作。而Volume类中的相关操作最终通过调用Linux函数完成。
五、Vold用户态
1. NetlinkManager
NetlinkManager负责与Kernel交互,通过PF_NETLINK来现。
Vlod启动代码如下(/system/vold/main.cpp):
plaincopy
- int main() {
- VolumeManager *vm;
- CommandListener *cl;
- NetlinkManager *nm;
- SLOGI("Vold 2.1 (the revenge) firing up");
- mkdir("/dev/block/vold", 0755);
- /* Create our singleton managers */
- if (!(vm = VolumeManager::Instance())) {
- SLOGE("Unable to create VolumeManager");
- exit(1);
- };
- if (!(nm = NetlinkManager::Instance())) {
- SLOGE("Unable to create NetlinkManager");
- exit(1);
- };
- cl = new CommandListener();
- vm->setBroadcaster((SocketListener *) cl);
- nm->setBroadcaster((SocketListener *) cl);
- if (vm->start()) {
- SLOGE("Unable to start VolumeManager (%s)", strerror(errno));
- exit(1);
- }
- /* 解析/etc/vold.fstab文件,
- 读取type, label, mount_point, part
- 1) 构建DirectVolume对象 :如果part为auto, 则调用dv = new DirectVolume(vm, label, mount_point, -1);
- 2) 添加vold.fstab中定义的某一挂载项对应的sysfs_path到 DirectVolume对象的mPaths容器 dv->addPath(sysfs_path);
- 3) 将这个DirectVolume 对象添加到 VolumeManager对象的容器mVolumes中 vm->addVolume(dv);
- */
- if (process_config(vm)) {
- SLOGE("Error reading configuration (%s)... continuing anyways", strerror(errno));
- }
- /*会调用NetlinkManager类的start()方法,它创建PF_NETLINK socket,
- 并开启线程从此socket中读取数据*/
- if (nm->start()) {
- SLOGE("Unable to start NetlinkManager (%s)", strerror(errno));
- exit(1);
- }
- #ifdef USE_USB_MODE_SWITCH
- SLOGE("Start Misc devices Manager...");
- MiscManager *mm;
- if (!(mm = MiscManager::Instance())) {
- SLOGE("Unable to create MiscManager");
- exit(1);
- };
- mm->setBroadcaster((SocketListener *) cl);
- if (mm->start()) {
- SLOGE("Unable to start MiscManager (%s)", strerror(errno));
- exit(1);
- }
- G3Dev* g3 = new G3Dev(mm);
- g3->handleUsb();
- mm->addMisc(g3);
- #endif
- coldboot("/sys/block"); // 冷启动,vold错过了一些uevent,重新触发。向sysfs的uevent文件写入”add\n” 字符也可以触发sysfs事件,相当执行了一次热插拔。
- // coldboot("/sys/class/switch");
- /*
- * Now that we're up, we can respond to commands
- */
- if (cl->startListener()) {
- SLOGE("Unable to start CommandListener (%s)", strerror(errno));
- exit(1);
- }
- // Eventually we'll become the monitoring thread
- while(1) {
- sleep(1000);
- }
- SLOGI("Vold exiting");
- exit(0);
- }
NetlinkManager的家族关系如下所示:
上图中的虚线为启动是的调用流程。
(1) class NetlinkManager(在其start函数中创建了NetlinkHandler对象,并把创建的socket作为参数)
(2)class NetlinkHandler: public NetlinkListener(实现了onEvent)
(3) class NetlinkListener : public SocketListener (实现了onDataAvailable)
(4) class SocketListener(实现了runListener,在一个线程中通过select查看哪些socket有数据,通过调用onDataAvailable来读取数据)
2. NetlinkManager::start()
plaincopy
- int NetlinkManager::start() {
- struct sockaddr_nl nladdr;
- int sz = 64 * 1024;
- int on = 1;
- memset(&nladdr, 0, sizeof(nladdr));
- nladdr.nl_family = AF_NETLINK;
- nladdr.nl_pid = getpid();
- nladdr.nl_groups = 0xffffffff;
- // 创建一个socket用于内核空间和用户空间的异步通信,监控系统的hotplug事件
- if ((mSock = socket(PF_NETLINK,
- SOCK_DGRAM,NETLINK_KOBJECT_UEVENT)) < 0) {
- SLOGE("Unable to create uevent socket: %s", strerror(errno));
- return -1;
- }
- if (setsockopt(mSock, SOL_SOCKET, SO_RCVBUFFORCE, &sz, sizeof(sz)) < 0) {
- SLOGE("Unable to set uevent socket SO_RECBUFFORCE option: %s", strerror(errno));
- return -1;
- }
- if (setsockopt(mSock, SOL_SOCKET, SO_PASSCRED, &on, sizeof(on)) < 0) {
- SLOGE("Unable to set uevent socket SO_PASSCRED option: %s", strerror(errno));
- return -1;
- }
- if (bind(mSock, (struct sockaddr *) &nladdr, sizeof(nladdr)) < 0) {
- SLOGE("Unable to bind uevent socket: %s", strerror(errno));
- return -1;
- }
- // 利用新创建的socket实例化一个NetlinkHandler类对象,NetlinkHandler继承了类NetlinkListener,
- // NetlinkListener又继承了类SocketListener
- mHandler = new NetlinkHandler(mSock);
- if (mHandler->start()) { //启动NetlinkHandler
- SLOGE("Unable to start NetlinkHandler: %s", strerror(errno));
- return -1;
- }
- return 0;
- }
把socket作为参数创建了NetlinkHandler对象,然后启动NetlinkHandler。
plaincopy
- int NetlinkHandler::start() {
- return this->startListener();
- }
- int SocketListener::startListener() {
- if (!mSocketName && mSock == -1) {
- SLOGE("Failed to start unbound listener");
- errno = EINVAL;
- return -1;
- } else if (mSocketName) {
- if ((mSock = android_get_control_socket(mSocketName)) < 0) {
- SLOGE("Obtaining file descriptor socket '%s' failed: %s",
- mSocketName, strerror(errno));
- return -1;
- }
- }
- if (mListen && listen(mSock, 4) < 0) {
- SLOGE("Unable to listen on socket (%s)", strerror(errno));
- return -1;
- } else if (!mListen)
- mClients->push_back(new SocketClient(mSock, false));
- if (pipe(mCtrlPipe)) {
- SLOGE("pipe failed (%s)", strerror(errno));
- return -1;
- }
- if (pthread_create(&mThread, NULL, SocketListener::threadStart, this)) {
- SLOGE("pthread_create (%s)", strerror(errno));
- return -1;
- }
- return 0;
- }
- void *SocketListener::threadStart(void *obj) {
- SocketListener *me = reinterpret_cast<SocketListener *>(obj);
- me->runListener();
- pthread_exit(NULL);
- return NULL;
- }
- void SocketListener::runListener() {
- SocketClientCollection *pendingList = new SocketClientCollection();
- while(1) { // 死循环,一直监听
- SocketClientCollection::iterator it;
- fd_set read_fds;
- int rc = 0;
- int max = -1;
- FD_ZERO(&read_fds); //清空文件描述符集read_fds
- if (mListen) {
- max = mSock;
- FD_SET(mSock, &read_fds); //添加文件描述符到文件描述符集read_fds
- }
- FD_SET(mCtrlPipe[0], &read_fds); //添加管道的读取端文件描述符到read_fds
- if (mCtrlPipe[0] > max)
- max = mCtrlPipe[0];
- pthread_mutex_lock(&mClientsLock); //对容器mClients的操作需要加锁
- for (it = mClients->begin(); it != mClients->end(); ++it) {
- int fd = (*it)->getSocket();
- FD_SET(fd, &read_fds); ////遍历容器mClients的所有成员,调用内联函数getSocket()获取文件描述符,并添加到文件描述符集read_fds
- if (fd > max)
- max = fd;
- }
- pthread_mutex_unlock(&mClientsLock);
- // 等待文件描述符中某一文件描述符或者说socket有数据到来
- if ((rc = select(max + 1, &read_fds, NULL, NULL, NULL)) < 0) {
- if (errno == EINTR)
- continue;
- SLOGE("select failed (%s)", strerror(errno));
- sleep(1);
- continue;
- } else if (!rc)
- continue;
- if (FD_ISSET(mCtrlPipe[0], &read_fds))
- break;
- if (mListen && FD_ISSET(mSock, &read_fds)) { //监听套接字处理
- struct sockaddr addr;
- socklen_t alen;
- int c;
- do {
- alen = sizeof(addr);
- c = accept(mSock, &addr, &alen); //接收链接请求,建立连接,如果成功c即为建立链接后的数据交换套接字,将其添加到mClient容器
- } while (c < 0 && errno == EINTR);
- if (c < 0) {
- SLOGE("accept failed (%s)", strerror(errno));
- sleep(1);
- continue;
- }
- pthread_mutex_lock(&mClientsLock);
- mClients->push_back(new SocketClient(c, true));
- pthread_mutex_unlock(&mClientsLock);
- }
- /* Add all active clients to the pending list first */
- pendingList->clear();
- pthread_mutex_lock(&mClientsLock);
- for (it = mClients->begin(); it != mClients->end(); ++it) {
- int fd = (*it)->getSocket();
- if (FD_ISSET(fd, &read_fds)) {
- pendingList->push_back(*it);
- }
- }
- pthread_mutex_unlock(&mClientsLock);
- /* Process the pending list, since it is owned by the thread,
- * there is no need to lock it */
- while (!pendingList->empty()) { //非监听套接字处理
- /* Pop the first item from the list */
- it = pendingList->begin();
- SocketClient* c = *it;
- pendingList->erase(it);
- /* Process it, if false is returned and our sockets are
- * connection-based, remove and destroy it */
- // ****** onDataAvailable在NetlinkListener中实现*********
- if (!onDataAvailable(c) && mListen) {
- /* Remove the client from our array */
- pthread_mutex_lock(&mClientsLock);
- for (it = mClients->begin(); it != mClients->end(); ++it) {
- if (*it == c) {
- mClients->erase(it);
- break;
- }
- }
- pthread_mutex_unlock(&mClientsLock);
- /* Remove our reference to the client */
- c->decRef();
- }
- }
- }
- delete pendingList;
- }
SocketListener::runListener是线程真正执行的函数:mListen成员用来判定是否监听套接字,Netlink套接字属于udp套接字,非监听套接字,该函数的主要功能体现在,如果该套接字有数据到来,就调用函数onDataAvailable读取数据。
3. NetlinkListener::onDataAvailable
plaincopy
- bool NetlinkListener::onDataAvailable(SocketClient *cli)
- {
- int socket = cli->getSocket();
- ssize_t count;
- // 从socket中读取kernel发送来的uevent消息
- count = TEMP_FAILURE_RETRY(uevent_kernel_multicast_recv(socket, mBuffer, sizeof(mBuffer)));
- if (count < 0) {
- SLOGE("recvmsg failed (%s)", strerror(errno));
- return false;
- }
- NetlinkEvent *evt = new NetlinkEvent();
- if (!evt->decode(mBuffer, count, mFormat)) {
- SLOGE("Error decoding NetlinkEvent");
- } else {
- onEvent(evt); //在NetlinkHandler中实现
- }
- delete evt;
- return true;
- }
4. NetlinkHandler::onEvent
plaincopy
- void NetlinkHandler::onEvent(NetlinkEvent *evt) {
- VolumeManager *vm = VolumeManager::Instance();
- const char *subsys = evt->getSubsystem();
- if (!subsys) {
- SLOGW("No subsystem found in netlink event");
- return;
- }
- if (!strcmp(subsys, "block")) {
- if(uEventOnOffFlag)
- {
- SLOGW("####netlink event block ####");
- evt->dump();
- }
- vm->handleBlockEvent(evt);
- #ifdef USE_USB_MODE_SWITCH
- } else if (!strcmp(subsys, "usb")
- || !strcmp(subsys, "scsi_device")) {
- SLOGW("subsystem found in netlink event");
- MiscManager *mm = MiscManager::Instance();
- mm->handleEvent(evt);
- #endif
- }
- }
5. uevent_kernel_multicast_recv
plaincopy
- /**
- * Like recv(), but checks that messages actually originate from the kernel.
- */
- ssize_t uevent_kernel_multicast_recv(int socket, void *buffer, size_t length) {
- struct iovec iov = { buffer, length };
- struct sockaddr_nl addr;
- char control[CMSG_SPACE(sizeof(struct ucred))];
- struct msghdr hdr = {
- &addr,
- sizeof(addr),
- &iov,
- 1,
- control,
- sizeof(control),
- 0,
- };
- ssize_t n = recvmsg(socket, &hdr, 0);
- if (n <= 0) {
- return n;
- }
- if (addr.nl_groups == 0 || addr.nl_pid != 0) {
- /* ignoring non-kernel or unicast netlink message */
- goto out;
- }
- struct cmsghdr *cmsg = CMSG_FIRSTHDR(&hdr);
- if (cmsg == NULL || cmsg->cmsg_type != SCM_CREDENTIALS) {
- /* ignoring netlink message with no sender credentials */
- goto out;
- }
- struct ucred *cred = (struct ucred *)CMSG_DATA(cmsg);
- if (cred->uid != 0) {
- /* ignoring netlink message from non-root user */
- goto out;
- }
- return n;
- out:
- /* clear residual potentially malicious data */
- bzero(buffer, length);
- errno = EIO;
- return -1;
- }
六、与Vold相关的Kernel态
- 用户态创建的netlink sock被kernel保存在:nl_table[sk->sk_protocol].mc_list
- Kernel态创建的netlink sock被kernel保存在:uevent_sock_list,上面的sk->sk_protocol为uevent_sock_list的协议, 二者只有协议一致才可以发送。
1. 创建kernel态sock
- 在用户态的socket创建方式(/system/vold/NetlinkManager.cpp):
plaincopy
- if ((mSock = socket(PF_NETLINK,
- SOCK_DGRAM,NETLINK_KOBJECT_UEVENT)) < 0) {
- SLOGE("Unable to create uevent socket: %s", strerror(errno));
- return -1;
- }
- 在Kernel的socket创建方式(/kernel/lib/kobject_uevent.c):
plaincopy
- static int uevent_net_init(struct net *net)
- {
- struct uevent_sock *ue_sk;
- ue_sk = kzalloc(sizeof(*ue_sk), GFP_KERNEL);
- if (!ue_sk)
- return -ENOMEM;
- ue_sk->sk = netlink_kernel_create(net, NETLINK_KOBJECT_UEVENT,
- 1, NULL, NULL, THIS_MODULE);
- if (!ue_sk->sk) {
- printk(KERN_ERR
- "kobject_uevent: unable to create netlink socket!\n");
- kfree(ue_sk);
- return -ENODEV;
- }
- mutex_lock(&uevent_sock_mutex);
- list_add_tail(&ue_sk->list, &uevent_sock_list);
- mutex_unlock(&uevent_sock_mutex);
- return 0;
- }
从上面的代码可知,此sock被创建之后,被增加到全局变量uevent_sock_list列表中,下面的分析围绕此列表进行。
- netlink_kernel_create函数原型:
plaincopy
- struct sock *netlink_kernel_create(struct net *net, int unit, unsigned int groups,
- void (*input)(struct sk_buff *skb),
- struct mutex *cb_mutex, struct module *module)
1) struct net *net:是一个网络名字空间namespace,在不同的名字空间里面可以有自己的转发信息库,有自己的一套net_device等等。默认情况下都是使用init_net这个全局变量
2) int unit: 表示netlink协议类型,如 NETLINK_KOBJECT_UEVENT
3) unsigned int groups: 组类型
4) void (*input)(struct sk_buff *skb):参数input则为内核模块定义的netlink消息处理函数,当有消息到达这个netlink socket时,该input函数指针就会被调用。函数指针input的参数skb实际上就是函数netlink_kernel_create返回的 struct sock指针,sock实际是socket的一个内核表示数据结构,用户态应用创建的socket在内核中也会有一个struct
sock结构来表示。
5) struct mutex *cb_mutex: 互斥销
6) struct module *module: 一般为THIS_MODULE
- struct sock
用户态socket在kernel中的表示。
2. 相关数据结构
相关数据结构如下图所示:
3. 发送消息给用户空间
3.1 发送消息流程图
3.2 kobject_uevent_env
plaincopy
- /**
- * kobject_uevent_env - send an uevent with environmental data
- *
- * @action: action that is happening
- * @kobj: struct kobject that the action is happening to
- * @envp_ext: pointer to environmental data
- *
- * Returns 0 if kobject_uevent_env() is completed with success or the
- * corresponding error when it fails.
- */
- int kobject_uevent_env(struct kobject *kobj, enum kobject_action action,
- char *envp_ext[])
- {
- struct kobj_uevent_env *env;
- const char *action_string = kobject_actions[action];
- const char *devpath = NULL;
- const char *subsystem;
- struct kobject *top_kobj;
- struct kset *kset;
- const struct kset_uevent_ops *uevent_ops;
- u64 seq;
- int i = 0;
- int retval = 0;
- #ifdef CONFIG_NET
- struct uevent_sock *ue_sk;
- #endif
- pr_debug("kobject: '%s' (%p): %s\n",
- kobject_name(kobj), kobj, __func__);
- /* search the kset we belong to */
- top_kobj = kobj;
- while (!top_kobj->kset && top_kobj->parent)
- top_kobj = top_kobj->parent;
- if (!top_kobj->kset) {
- pr_debug("kobject: '%s' (%p): %s: attempted to send uevent "
- "without kset!\n", kobject_name(kobj), kobj,
- __func__);
- return -EINVAL;
- }
- kset = top_kobj->kset;
- uevent_ops = kset->uevent_ops;
- /* skip the event, if uevent_suppress is set*/
- if (kobj->uevent_suppress) {
- pr_debug("kobject: '%s' (%p): %s: uevent_suppress "
- "caused the event to drop!\n",
- kobject_name(kobj), kobj, __func__);
- return 0;
- }
- /* skip the event, if the filter returns zero. */
- if (uevent_ops && uevent_ops->filter)
- if (!uevent_ops->filter(kset, kobj)) {
- pr_debug("kobject: '%s' (%p): %s: filter function "
- "caused the event to drop!\n",
- kobject_name(kobj), kobj, __func__);
- return 0;
- }
- /* originating subsystem */
- if (uevent_ops && uevent_ops->name)
- subsystem = uevent_ops->name(kset, kobj);
- else
- subsystem = kobject_name(&kset->kobj);
- if (!subsystem) {
- pr_debug("kobject: '%s' (%p): %s: unset subsystem caused the "
- "event to drop!\n", kobject_name(kobj), kobj,
- __func__);
- return 0;
- }
- /* environment buffer */
- env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
- if (!env)
- return -ENOMEM;
- /* complete object path */
- devpath = kobject_get_path(kobj, GFP_KERNEL);
- if (!devpath) {
- retval = -ENOENT;
- goto exit;
- }
- /* default keys */
- retval = add_uevent_var(env, "ACTION=%s", action_string);
- if (retval)
- goto exit;
- retval = add_uevent_var(env, "DEVPATH=%s", devpath);
- if (retval)
- goto exit;
- retval = add_uevent_var(env, "SUBSYSTEM=%s", subsystem);
- if (retval)
- goto exit;
- /* keys passed in from the caller */
- if (envp_ext) {
- for (i = 0; envp_ext[i]; i++) {
- retval = add_uevent_var(env, "%s", envp_ext[i]);
- if (retval)
- goto exit;
- }
- }
- /* let the kset specific function add its stuff */
- if (uevent_ops && uevent_ops->uevent) {
- retval = uevent_ops->uevent(kset, kobj, env);
- if (retval) {
- pr_debug("kobject: '%s' (%p): %s: uevent() returned "
- "%d\n", kobject_name(kobj), kobj,
- __func__, retval);
- goto exit;
- }
- }
- /*
- * Mark "add" and "remove" events in the object to ensure proper
- * events to userspace during automatic cleanup. If the object did
- * send an "add" event, "remove" will automatically generated by
- * the core, if not already done by the caller.
- */
- if (action == KOBJ_ADD)
- kobj->state_add_uevent_sent = 1;
- else if (action == KOBJ_REMOVE)
- kobj->state_remove_uevent_sent = 1;
- /* we will send an event, so request a new sequence number */
- spin_lock(&sequence_lock);
- seq = ++uevent_seqnum;
- spin_unlock(&sequence_lock);
- retval = add_uevent_var(env, "SEQNUM=%llu", (unsigned long long)seq);
- if (retval)
- goto exit;
- #if defined(CONFIG_NET)
- /* send netlink message */
- mutex_lock(&uevent_sock_mutex);
- list_for_each_entry(ue_sk, &uevent_sock_list, list) {
- struct sock *uevent_sock = ue_sk->sk;
- struct sk_buff *skb;
- size_t len;
- /* allocate message with the maximum possible size */
- len = strlen(action_string) + strlen(devpath) + 2;
- skb = alloc_skb(len + env->buflen, GFP_KERNEL);
- if (skb) {
- char *scratch;
- /* add header */
- scratch = skb_put(skb, len);
- sprintf(scratch, "%s@%s", action_string, devpath); //action_string+devpath
- /* copy keys to our continuous event payload buffer */
- for (i = 0; i < env->envp_idx; i++) {
- len = strlen(env->envp[i]) + 1;
- scratch = skb_put(skb, len);
- strcpy(scratch, env->envp[i]);
- }
- NETLINK_CB(skb).dst_group = 1;
- retval = netlink_broadcast_filtered(uevent_sock, skb,
- 0, 1, GFP_KERNEL,
- kobj_bcast_filter,
- kobj);
- /* ENOBUFS should be handled in userspace */
- if (retval == -ENOBUFS)
- retval = 0;
- } else
- retval = -ENOMEM;
- }
- mutex_unlock(&uevent_sock_mutex);
- #endif
- /* call uevent_helper, usually only enabled during early boot */
- if (uevent_helper[0] && !kobj_usermode_filter(kobj)) {
- char *argv [3];
- argv [0] = uevent_helper;
- argv [1] = (char *)subsystem;
- argv [2] = NULL;
- retval = add_uevent_var(env, "HOME=/");
- if (retval)
- goto exit;
- retval = add_uevent_var(env,
- "PATH=/sbin:/bin:/usr/sbin:/usr/bin");
- if (retval)
- goto exit;
- retval = call_usermodehelper(argv[0], argv,
- env->envp, UMH_WAIT_EXEC);
- }
- exit:
- kfree(devpath);
- kfree(env);
- return retval;
- }
plaincopy
- /**
- * kobject_uevent - notify userspace by sending an uevent
- *
- * @action: action that is happening
- * @kobj: struct kobject that the action is happening to
- *
- * Returns 0 if kobject_uevent() is completed with success or the
- * corresponding error when it fails.
- */
- int kobject_uevent(struct kobject *kobj, enum kobject_action action)
- {
- return kobject_uevent_env(kobj, action, NULL);
- }
3.3 netlink_broadcast_filtered
plaincopy
- int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 pid,
- u32 group, gfp_t allocation,
- int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
- void *filter_data)
- {
- struct net *net = sock_net(ssk);
- struct netlink_broadcast_data info;
- struct hlist_node *node;
- struct sock *sk;
- skb = netlink_trim(skb, allocation);
- info.exclude_sk = ssk;
- info.net = net;
- info.pid = pid;
- info.group = group;
- info.failure = 0;
- info.delivery_failure = 0;
- info.congested = 0;
- info.delivered = 0;
- info.allocation = allocation;
- info.skb = skb;
- info.skb2 = NULL;
- info.tx_filter = filter;
- info.tx_data = filter_data;
- /* While we sleep in clone, do not allow to change socket list */
- netlink_lock_table();
- // 向nl_table[ssk->sk_protocol].mc_list中的每个sock发送此netlink消息
- sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
- do_one_broadcast(sk, &info);
- consume_skb(skb);
- netlink_unlock_table();
- if (info.delivery_failure) {
- kfree_skb(info.skb2);
- return -ENOBUFS;
- } else
- consume_skb(info.skb2);
- if (info.delivered) {
- if (info.congested && (allocation & __GFP_WAIT))
- yield();
- return 0;
- }
- return -ESRCH;
- }
static struct netlink_table *nl_table;是全局变量,它维护了用户态创建的所有netlink sock,按协议分类,每种协议一个链表mc_list。它在函数netlink_proto_init中被初始化,向nl_table[sk->sk_protocol].mc_list中增加sock的调用流程如下(kernel/net/netlink/af_netlink.c):
3.4 do_one_broadcast
plaincopy
- static inline int do_one_broadcast(struct sock *sk,
- struct netlink_broadcast_data *p)
- {
- struct netlink_sock *nlk = nlk_sk(sk);
- int val;
- if (p->exclude_sk == sk)
- goto out;
- if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
- !test_bit(p->group - 1, nlk->groups))
- goto out;
- if (!net_eq(sock_net(sk), p->net))
- goto out;
- if (p->failure) {
- netlink_overrun(sk);
- goto out;
- }
- sock_hold(sk);
- if (p->skb2 == NULL) {
- if (skb_shared(p->skb)) {
- p->skb2 = skb_clone(p->skb, p->allocation);
- } else {
- p->skb2 = skb_get(p->skb);
- /*
- * skb ownership may have been set when
- * delivered to a previous socket.
- */
- skb_orphan(p->skb2);
- }
- }
- if (p->skb2 == NULL) {
- netlink_overrun(sk);
- /* Clone failed. Notify ALL listeners. */
- p->failure = 1;
- if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
- p->delivery_failure = 1;
- } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
- kfree_skb(p->skb2);
- p->skb2 = NULL;
- } else if (sk_filter(sk, p->skb2)) {
- kfree_skb(p->skb2);
- p->skb2 = NULL;
- } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
- netlink_overrun(sk);
- if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
- p->delivery_failure = 1;
- } else {
- p->congested |= val;
- p->delivered = 1;
- p->skb2 = NULL;
- }
- sock_put(sk);
- out:
- return 0;
- }
3.5 netlink_broadcast_deliver
plaincopy
- static inline int netlink_broadcast_deliver(struct sock *sk,
- struct sk_buff *skb)
- {
- struct netlink_sock *nlk = nlk_sk(sk);
- if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
- !test_bit(0, &nlk->state)) {
- skb_set_owner_r(skb, sk);
- skb_queue_tail(&sk->sk_receive_queue, skb);
- sk->sk_data_ready(sk, skb->len);
- return atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf;
- }
- return -1;
- }