斐波那契数列——兔子繁殖问题

时间:2021-02-26 16:24:26

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。 斐波那契数列 一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?

我们不妨拿新出生的一对小兔子分析一下:

   第一个月小兔子没有繁殖能力,所以还是一对;

   两个月后,生下一对小兔民数共有两对;

  三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;

  --- 依次类推可以列出下表: 经过月数:0,1,2,3,4,5,6,7,8,9,10,11,12

                 兔子对数:1,1,2,3,5,8,13,21,34,55,89,144,233

  表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。 这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3...)