Elasticsearch学习记录(入门篇)

时间:2021-02-05 15:56:39

Elasticsearch学习记录(入门篇)

1、 Elasticsearch的请求与结果

请求结构

curl -X<VERB> '<PROTOCOL>://<HOST>:<PORT>/<PATH>?<QUERY_STRING>' -d '<BODY>'
  • VERB HTTP方法:GET, POST, PUT, HEAD, DELETE
  • PROTOCOL http或者https协议(只有在Elasticsearch前面有https代理的时候可用)
  • HOST Elasticsearch集群中的任何一个节点的主机名,如果是在本地的节点,那么就叫localhost
  • PORT Elasticsearch HTTP服务所在的端口,默认为9200
  • PATH API路径(例如_count将返回集群中文档的数量),PATH可以包含多个组件,例如_cluster/stats或者_nodes/stats/jvm
  • QUERY_STRING 一些可选的查询请求参数,例如?pretty参数将使请求返回更加美观易读的JSON数据

    BODY 一个JSON格式的请求主体(如果请求需要的话)

PUT创建(索引创建)

$ curl -XPUT 'http://localhost:9200/megacorp/employee/3?pretty' -d '

{

"first_name" :  "Douglas",
"last_name" : "Fir",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]

}

{

"_index" : "megacorp",

"_type" : "employee",

"_id" : "3",

"_version" : 1,

"_shards" : {

"total" : 2,

"successful" : 1,

"failed" : 0

},

"created" : true

}

##GET请求(搜索)
###检索文档

$ curl -XGET 'http://localhost:9200/megacorp/employee/1?pretty'

{

"_index" : "megacorp",

"_type" : "employee",

"_id" : "1",

"_version" : 1,

"found" : true,

"_source" : {

"first_name" : "John",

"last_name" : "Smith",

"age" : 25,

"about" : "I love to go rock climbing",

"interests" : [ "sports", "music" ]

}

}

###简单搜索
使用`megacorp`索引和`employee`类型,但是我们在结尾使用关键字\_search来取代原来的文档ID。响应内容的hits数组中包含了我们所有的三个文档。默认情况下搜索会返回前10个结果。

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty'

{

"took" : 2,

"timed_out" : false,

"_shards" : {

"total" : 5,

"successful" : 5,

"failed" : 0

},

"hits" : {

"total" : 3,

"max_score" : 1.0,

"hits" : [ {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "2",

"_score" : 1.0,

"_source" : {

"first_name" : "Jane",

"last_name" : "Smith",

"age" : 32,

"about" : "I like to collect rock albums",

"interests" : [ "music" ]

}

}, {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "1",

"_score" : 1.0,

"_source" : {

"first_name" : "John",

"last_name" : "Smith",

"age" : 25,

"about" : "I love to go rock climbing",

"interests" : [ "sports", "music" ]

}

}, {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "3",

"_score" : 1.0,

"_source" : {

"first_name" : "Douglas",

"last_name" : "Fir",

"age" : 35,

"about" : "I like to build cabinets",

"interests" : [ "forestry" ]

}

} ]

}

}

接下来,让我们搜索姓氏中包含“Smith”的员工。我们将在命令行中使用轻量级的搜索方法。这种方法常被称作查询字符串(query string)搜索,因为我们像传递URL参数一样去传递查询语句:

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?q=last_name:Smith&pretty'


{

"took" : 4,

"timed_out" : false,

"_shards" : {

"total" : 5,

"successful" : 5,

"failed" : 0

},

"hits" : {

"total" : 2,

"max_score" : 0.30685282,

"hits" : [ {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "2",

"_score" : 0.30685282,

"_source" : {

"first_name" : "Jane",

"last_name" : "Smith",

"age" : 32,

"about" : "I like to collect rock albums",

"interests" : [ "music" ]

}

}, {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "1",

"_score" : 0.30685282,

"_source" : {

"first_name" : "John",

"last_name" : "Smith",

"age" : 25,

"about" : "I love to go rock climbing",

"interests" : [ "sports", "music" ]

}

} ]

}

}

###使用DSL语句查询
查询字符串搜索便于通过命令行完成特定(ad hoc)的搜索,但是它也有局限性(参阅简单搜索章节)。Elasticsearch提供丰富且灵活的查询语言叫做DSL查询(Query DSL),它允许你构建更加复杂、强大的查询。 DSL(Domain Specific Language特定领域语言)以JSON请求体的形式出现。我们可以这样表示之前关于“Smith”的查询:

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty' -d '

{

"query" : {

"match" : {

"last_name" : "Smith"

}

}

}

'

###更复杂的搜索
我们让搜索稍微再变的复杂一些。我们依旧想要找到姓氏为“Smith”的员工,但是我们只想得到年龄大于30岁的员工。我们的语句将添加过滤器(filter),它使得我们高效率的执行一个结构化搜索:

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty' -d '

{

"query" : {

"filtered" : {

"filter" : {

"range" : {

"age" : { "gt" : 30 } --<1>

}

},

"query" : {

"match" : {

"last_name" : "smith" --<2>

}

}

}

}

}

'


* <1> 这部分查询属于区间过滤器(range filter),它用于查找所有年龄大于30岁的数据——gt为"greater than"的缩写。
* <2> 这部分查询与之前的match语句(query)一致。

{

"took" : 2,

"timed_out" : false,

"_shards" : {

"total" : 5,

"successful" : 5,

"failed" : 0

},

"hits" : {

"total" : 1,

"max_score" : 0.30685282,

"hits" : [ {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "2",

"_score" : 0.30685282,

"_source" : {

"first_name" : "Jane",

"last_name" : "Smith",

"age" : 32,

"about" : "I like to collect rock albums",

"interests" : [ "music" ]

}

} ]

}

}

###全文搜索
到目前为止搜索都很简单:搜索特定的名字,通过年龄筛选。让我们尝试一种更高级的搜索,全文搜索——一种传统数据库很难实现的功能。 我们将会搜索所有喜欢“rock climbing”的员工:

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty' -d '

{

"query" : {

"match" : {

"about" : "rock climbing"

}

}

}

'

你可以看到我们使用了之前的`match`查询,从`about`字段中搜索"**rock climbing**",我们得到了两个匹配文档:

{

"took" : 3,

"timed_out" : false,

"_shards" : {

"total" : 5,

"successful" : 5,

"failed" : 0

},

"hits" : {

"total" : 2,

"max_score" : 0.16273327,

"hits" : [ {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "1",

"_score" : 0.16273327,<1>

"_source" : {

"first_name" : "John",

"last_name" : "Smith",

"age" : 25,

"about" : "I love to go rock climbing",

"interests" : [ "sports", "music" ]

}

}, {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "2",

"_score" : 0.016878016,<2>

"_source" : {

"first_name" : "Jane",

"last_name" : "Smith",

"age" : 32,

"about" : "I like to collect rock albums",

"interests" : [ "music" ]

}

} ]

}

}


* <1><2> 结果相关性评分。 默认情况下,Elasticsearch根据结果相关性评分来对结果集进行排序,所谓的「结果相关性评分」就是文档与查询条件的匹配程度。很显然,排名第一的`John Smith`的`about`字段明确的写到“**rock climbing**” 但是为什么`Jane Smith`也会出现在结果里呢?原因是“**rock**”在她的abuot字段中被提及了。因为只有“**rock**”被提及而“**climbing**”没有,所以她的`_score`要低于John。 ###短语搜索
目前我们可以在字段中搜索单独的一个词,这挺好的,但是有时候你想要确切的匹配若干个单词或者短语(phrases)。例如我们想要查询同时包含"rock"和"climbing"(并且是相邻的)的员工记录。 要做到这个,我们只要将`match`查询变更为`match_phrase`查询即可:

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty' -d '

{

"query" : {

"match_phrase" : {

"about" : "rock climbing"

}

}

}

'

{

"took" : 16,

"timed_out" : false,

"_shards" : {

"total" : 5,

"successful" : 5,

"failed" : 0

},

"hits" : {

"total" : 1,

"max_score" : 0.23013961,

"hits" : [ {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "1",

"_score" : 0.23013961,

"_source" : {

"first_name" : "John",

"last_name" : "Smith",

"age" : 25,

"about" : "I love to go rock climbing",

"interests" : [ "sports", "music" ]

}

} ]

}

}

###高亮我们的搜索
很多应用喜欢从每个搜索结果中**高亮(highlight)**匹配到的关键字,这样用户可以知道为什么这些文档和查询相匹配。在Elasticsearch中高亮片段是非常容易的。 让我们在之前的语句上增加`highlight`参数:

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty' -d '

{

"query" : {

"match_phrase" : {

"about" : "rock climbing"

}

},

"highlight": {

"fields" : {

"about" : {}

}

}

}

'

当我们运行这个语句时,会命中与之前相同的结果,但是在返回结果中会有一个新的部分叫做`highlight`,这里包含了来自`about`字段中的文本,并且用\<em>\</em>来标识匹配到的单词。

{

"took" : 33,

"timed_out" : false,

"_shards" : {

"total" : 5,

"successful" : 5,

"failed" : 0

},

"hits" : {

"total" : 1,

"max_score" : 0.23013961,

"hits" : [ {

"_index" : "megacorp",

"_type" : "employee",

"_id" : "1",

"_score" : 0.23013961,

"_source" : {

"first_name" : "John",

"last_name" : "Smith",

"age" : 25,

"about" : "I love to go rock climbing",

"interests" : [ "sports", "music" ]

},

"highlight" : {

"about" : [ "I love to go rock climbing" ]

}

} ]

}

}

##聚合
###分析
最后,我们还有一个需求需要完成:允许管理者在职员目录中进行一些分析。 Elasticsearch有一个功能叫做**聚合(aggregations)**,它允许你在数据上生成复杂的分析统计。它很像SQL中的`GROUP BY`但是功能更强大。

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty' -d '

{

"aggs": {

"all_interests": {

"terms": { "field": "interests" }

}

}

}

'

查询结果:

{...

"aggregations" : {

"all_interests" : {

"doc_count_error_upper_bound" : 0,

"sum_other_doc_count" : 0,

"buckets" : [ {

"key" : "music",

"doc_count" : 2

}, {

"key" : "forestry",

"doc_count" : 1

}, {

"key" : "sports",

"doc_count" : 1

} ]

}

}

}

这些数据并没有被预先计算好,它们是实时的从匹配查询语句的文档中动态计算生成的。

如果我们想知道所有姓"Smith"的人最大的共同点(兴趣爱好),我们只需要增加合适的语句既可:

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty' -d '

{

"query": {

"match": {

"last_name": "smith"

}

},

"aggs": {

"all_interests": {

"terms": {

"field": "interests"

}

}

}

}

'

all_interests聚合已经变成只包含和查询语句相匹配的文档了:

...

"all_interests": {

"buckets": [

{

"key": "music",

"doc_count": 2

},

{

"key": "sports",

"doc_count": 1

}

]

}


聚合也允许分级汇总。例如,让我们统计每种兴趣下职员的平均年龄:

$ curl -XGET 'http://localhost:9200/megacorp/employee/_search?pretty' -d '

{

"aggs" : {

"all_interests" : {

"terms" : { "field" : "interests" },

"aggs" : {

"avg_age" : {

"avg" : { "field" : "age" }

}

}

}

}

}

'


虽然这次返回的聚合结果有些复杂,但仍然很容易理解:

...

"all_interests": {

"buckets": [

{

"key": "music",

"doc_count": 2,

"avg_age": {

"value": 28.5

}

},

{

"key": "forestry",

"doc_count": 1,

"avg_age": {

"value": 35

}

},

{

"key": "sports",

"doc_count": 1,

"avg_age": {

"value": 25

}

}

]

}

该聚合结果比之前的聚合结果要更加丰富。我们依然得到了兴趣以及数量(指具有该兴趣的员工人数)的列表,但是现在每个兴趣额外拥有`avg_age`字段来显示具有该兴趣员工的平均年龄。