洛谷P2766 最长不下降子序列问题(最大流)

时间:2022-12-26 15:39:11

传送门

第一问直接$dp$解决,求出$len$

然后用$f[i]$表示以$i$为结尾的最长不下降子序列长度,把每一个点拆成$A_i,B_i$两个点,然后从$A_i$向$B_i$连容量为$1$的边

然后考虑$f[i]$,如果$f[i]==1$,则从$s$向$A_i$连边,如果$f[i]==len$,那么从$B_i$向$t$连边

然后将每一个$j<i,f[j]+1==f[i],a[j]\leq a[i]$的$j$向$i$连边

以上容量全为$1$

建完图之后跑一个最大流

这样可以保证分层图里选出来的不下降子序列长度必为$len$

然后第三问的话,就把关于$1$和$n$的容量限制给取消掉就好了,就是$s$向$A_1$连$inf$,$A_1$向$B_1$连$inf$,$A_n$向$B_n$连$inf$,$B_n$向$t$连$inf$(如果$f[n]!=len$就不用连了)

然后再跑一次最大流就是第三问的答案

 //minamoto
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int ver[M],Next[M],head[N],edge[M],cur[N],dep[N],tot=,a[N],dp[N];
int n,m,s,t,ans,len=;
queue<int> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=;
}
bool bfs(){
memset(dep,-,sizeof(dep));
while(!q.empty()) q.pop();
for(int i=;i<=*n+;++i) cur[i]=head[i];
q.push(s),dep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]<&&edge[i]){
dep[v]=dep[u]+,q.push(v);
if(v==t) return true;
}
}
}
return false;
}
int dfs(int u,int limit){
if(!limit||u==t) return limit;
int flow=,f;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
return flow;
}
void dinic(){
while(bfs()) ans+=dfs(s,inf);
}
int main(){
n=read();
for(int i=;i<=n;++i) a[i]=read(),dp[i]=;
for(int i=;i<=n;++i){
for(int j=;j<i;++j)
if(a[j]<=a[i]) cmax(dp[i],dp[j]+);
cmax(len,dp[i]);
}
printf("%d\n",len);
s=,t=*n+;
for(int i=;i<=n;++i){
if(dp[i]==) add(s,i,);
if(dp[i]==len) add(i+n,t,);
add(i,i+n,);
}
for(int i=;i<=n;++i)
for(int j=;j<i;++j)
if(a[j]<=a[i]&&dp[j]==dp[i]-) add(j+n,i,);
dinic();printf("%d\n",ans);
add(,n+,inf),add(s,,inf);
if(dp[n]==len) add(n,n<<,inf),add(n<<,t,inf);
dinic();printf("%d\n",ans);
return ;
}