BZOJ 3674: 可持久化并查集加强版

时间:2023-02-13 14:35:46

题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3674

题意:三种操作:(1)合并ab所在集合;(2)查询ab是否在一个集合;(3)状态回到第x个操作之前。

思路:(1)每个节点保存一个深度;合并时找到两个节点的根,ra,rb,若ra的深度小,则ra的父亲设为rb,否则rb的父亲设为ra;(2)查询直接找到两个的根。这个的复杂度是多少呢?貌似是logn*logn。每次查询logn,深度logn;(3)这个就比较好操作了。

int ls[M],rs[M],dep[M],mp[M];
int e;
int root[N];

int n,m;

void build(int &t,int L,int R)
{
    t=++e;
    if(L==R)
    {
        mp[t]=L;
        return;
    }
    int M=(L+R)>>1;
    build(ls[t],L,M);
    build(rs[t],M+1,R);
}

int get(int t,int L,int R,int x)
{
    if(L==R) return t;
    int M=(L+R)>>1;
    if(x<=M) return get(ls[t],L,M,x);
    return get(rs[t],M+1,R,x);
}

int get(int t,int x)
{
    int p=get(t,1,n,x);
    if(mp[p]==x) return p;
    return get(t,mp[p]);
}

void upd(int L,int R,int x,int &y,int pos,int val)
{
    y=++e;
    if(L==R)
    {
        mp[y]=val;
        return;
    }
    ls[y]=ls[x];
    rs[y]=rs[x];
    int M=(L+R)>>1;
    if(pos<=M) upd(L,M,ls[x],ls[y],pos,val);
    else     upd(M+1,R,rs[x],rs[y],pos,val);
}

void add(int L,int R,int k,int pos)
{
    if(L==R)
    {
        dep[k]++;
        return;
    }
    int M=(L+R)>>1;
    if(pos<=M) add(L,M,ls[k],pos);
    else     add(M+1,R,rs[k],pos);
}

int main()
{

    n=getInt();
    m=getInt();
    build(root[0],1,n);

    int i;
    int ans=0;
    for(i=1;i<=m;i++)
    {
        int op;
        int x,y,k;
        op=getInt();
        if(op==1)
        {
            x=getInt();
            y=getInt();

            x^=ans;
            y^=ans;

            root[i]=root[i-1];
            x=get(root[i],x);
            y=get(root[i],y);
            if(mp[x]==mp[y]) continue;

            if(dep[x]>dep[y]) swap(x,y);
            upd(1,n,root[i-1],root[i],mp[x],mp[y]);
            if(dep[x]==dep[y]) add(1,n,root[i],mp[y]);
        }
        else if(op==2)
        {
            k=getInt();

            k^=ans;

            root[i]=root[k];
        }
        else
        {
            x=getInt();
            y=getInt();

            x^=ans;
            y^=ans;

            root[i]=root[i-1];
            x=get(root[i],x);
            y=get(root[i],y);

            if(mp[x]==mp[y]) puts("1"),ans=1;
            else puts("0"),ans=0;
        }
    }
}