I trained and saved a Bidirectional LSTM model in Keras successfully with:
我成功地在Keras训练并保存了双向LSTM模型:
model = Sequential()
model.add(Bidirectional(LSTM(N_HIDDEN_NEURONS,
return_sequences=True,
activation="tanh",
input_shape=(SEGMENT_TIME_SIZE, N_FEATURES))))
model.add(Bidirectional(LSTM(N_HIDDEN_NEURONS)))
model.add(Dropout(0.5))
model.add(Dense(N_CLASSES, activation='sigmoid'))
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=BATCH_SIZE,
epochs=N_EPOCHS,
validation_data=[X_test, y_test])
model.save('model_keras/model.h5')
However, when I want to load it with:
但是,当我想加载它时:
model = load_model('model_keras/model.h5')
I get an error:
我收到一个错误:
ValueError: You are trying to load a weight file containing 3 layers into a model with 0 layers.
ValueError:您正在尝试将包含3个图层的权重文件加载到具有0个图层的模型中。
I also tried different methods like saving and loading model architecture and weights separately but none of them worked for me. Also, previously, when I was using normal (unidirectional) LSTMs, loading the model worked fine.
我也尝试过不同的方法,比如单独保存和加载模型架构和权重,但它们都不适用于我。此外,以前,当我使用普通(单向)LSTM时,加载模型工作正常。
1 个解决方案
#1
0
As mentioned by @mpariente and @today, the input_shape
is an argument of Bidirectional, not LSTM, see Keras documentation. My solution:
如@mpariente和@today所述,input_shape是Bidirectional的参数,而不是LSTM,请参阅Keras文档。我的解决方案
# Model
model = Sequential()
model.add(Bidirectional(LSTM(N_HIDDEN_NEURONS,
return_sequences=True,
activation="tanh"),
input_shape=(SEGMENT_TIME_SIZE, N_FEATURES)))
model.add(Bidirectional(LSTM(N_HIDDEN_NEURONS)))
model.add(Dropout(0.5))
model.add(Dense(N_CLASSES, activation='sigmoid'))
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=BATCH_SIZE,
epochs=N_EPOCHS,
validation_data=[X_test, y_test])
model.save('model_keras/model.h5')
and then, to load, simply do:
然后,加载,只需:
model = load_model('model_keras/model.h5')
#1
0
As mentioned by @mpariente and @today, the input_shape
is an argument of Bidirectional, not LSTM, see Keras documentation. My solution:
如@mpariente和@today所述,input_shape是Bidirectional的参数,而不是LSTM,请参阅Keras文档。我的解决方案
# Model
model = Sequential()
model.add(Bidirectional(LSTM(N_HIDDEN_NEURONS,
return_sequences=True,
activation="tanh"),
input_shape=(SEGMENT_TIME_SIZE, N_FEATURES)))
model.add(Bidirectional(LSTM(N_HIDDEN_NEURONS)))
model.add(Dropout(0.5))
model.add(Dense(N_CLASSES, activation='sigmoid'))
model.compile('adam', 'binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=BATCH_SIZE,
epochs=N_EPOCHS,
validation_data=[X_test, y_test])
model.save('model_keras/model.h5')
and then, to load, simply do:
然后,加载,只需:
model = load_model('model_keras/model.h5')