熊猫-键盘错误:“[]不在索引中”,当训练一个Keras模型

时间:2021-06-17 13:54:59

I'm trying to train a Keras model based on partial features from my data set. I've loaded the data set and extracted the features like so:

我正在尝试基于我的数据集的部分特征来训练一个Keras模型。我已经加载了数据集并提取了如下特征:

train_data = pd.read_csv('../input/data.csv')

X = train_data.iloc[:, 0:30]
Y = train_data.iloc[:,30]

# Code for selecting the important features automatically (removed) ...    

# Selectintg important features 14,17,12,11,10,16,18,4,9,3
X = train_data.reindex(columns=['V14','V17','V12','V11','V10','V16','V18','V4','V9','V3'])
print(X.shape[1]) # -> 10

But when I'm calling the fit method:

但是当我调用fit方法时

# Fit the model
history = model.fit(X, Y, validation_split=0.33, epochs=10, batch_size=10, verbose=0, callbacks=[early_stop])

I get the following error:

我得到以下错误:

KeyError: '[3 2 5 1 0 4] not in index'

What am I missing?

我缺少什么?

1 个解决方案

#1


6  

keras expects model inputs to be numpy arrays - not pandas.DataFrames. Try:

keras希望模型输入是numpy数组,而不是pandas.DataFrames。试一试:

X = train_data.iloc[:, 0:30].as_matrix()
Y = train_data.iloc[:,30].as_matrix()

As as_matrix method converts pandas.DataFrame to a numpy.array.

as_matrix方法转换熊猫。DataFrame numpy.array。

#1


6  

keras expects model inputs to be numpy arrays - not pandas.DataFrames. Try:

keras希望模型输入是numpy数组,而不是pandas.DataFrames。试一试:

X = train_data.iloc[:, 0:30].as_matrix()
Y = train_data.iloc[:,30].as_matrix()

As as_matrix method converts pandas.DataFrame to a numpy.array.

as_matrix方法转换熊猫。DataFrame numpy.array。