tensorflow 下CNN卷积神经网络实现
简介:卷积神经网络原理其实就是基于感受野,感受野讲的是只需识别某个图片的一个小区域就知道有某个东西。比如,在一个会议室里,要识别里面是否有投影仪,只需要看放投影仪的那部分小区域就知道这个会议室有投影仪。在卷积神经网络中也是通过卷积和池化来减少计算的复杂度,正式基于感受野的原理。
什么是卷积神经网络?我们以奠基之作Lenet-5为例子
上图中有输入层,卷积C1、C3、C5层,池化S2、S4层,全连接层、输出层
对于一张输入 32*32的黑白图片,经过5x5的filter(神经元)提取出 28x28 feature map。对于C1层,5x5的filter就有25个可训练参数,加上一个共享偏置,每个卷积核就有26个可训练参数,总共就有26*6=156个参数。有(5x5+1)x28x28x6=122304个连接,5*5神经元和1个bias都要和28x28相连
对于池化S2: filter是2x2的,采用的是加和乘一个参数加偏置,训练的参数有 (1+1)x6=12个参数,连接数(2×2+1)x6×14×14=5880个
由于C3的输入并非全部的S2输出,之后的参数和连接就不计算了。值得注意的是在S4(5x5)-->filter(5x5)-->C5类似于一个全连接,图中并没有标错
CNN源码可以下载
代码解释如下,其中将几乎每一步的解释都备注了在了代码。期间有不懂的可以使用print打印语句。欢迎评论。
# -*- coding: utf-8 -*- """Simple, end-to-end, LeNet-5-like convolutional MNIST model example. This should achieve a test error of 0.7%. Please keep this model as simple and linear as possible, it is meant as a tutorial for simple convolutional models. Run with --self_test on the command line to execute a short self-test. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import sys import time import numpy from six.moves import urllib from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' WORK_DIRECTORY = '/home/xzy/tf-input-data' IMAGE_SIZE = 28 NUM_CHANNELS = 1 PIXEL_DEPTH = 255 NUM_LABELS = 10 VALIDATION_SIZE = 500 # 自定义validate 数据集. SEED = 66478 # Set to None for random seed. BATCH_SIZE = 64 NUM_EPOCHS = 10 # 自定义训练集上轮循10次 EVAL_BATCH_SIZE = 64 # 定义每批次数据 EVAL_FREQUENCY = 100 # 执行步长 TRAIN_MAX = 5000 # 自定义训练数据大小 tf.app.flags.DEFINE_boolean("self_test", False, "True if running a self test.") tf.app.flags.DEFINE_boolean('use_fp16', False, "Use half floats instead of full floats if True.") FLAGS = tf.app.flags.FLAGS def data_type(): """返回激活函数、权重、placeholder变量的类型""" if FLAGS.use_fp16: return tf.float16 else: return tf.float32 def maybe_download(filename): """如果数据不存在,则下载数据""" if not tf.gfile.Exists(WORK_DIRECTORY): tf.gfile.MakeDirs(WORK_DIRECTORY) filepath = os.path.join(WORK_DIRECTORY, filename) if not tf.gfile.Exists(filepath): filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) with tf.gfile.GFile(filepath) as f: size = f.size() print('Successfully downloaded', filename, size, 'bytes.') return filepath def extract_data(filename, num_images): """提取图像为4D tensor [image index, y, x, channels]. 其值从[0, 255]重新调整为[-0.5, 0.5]. """ print('Extracting', filename) with gzip.open(filename) as bytestream: bytestream.read(16) buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32) """ print('--------------------------------') print('data1=', data) print('--------------------------------') """ data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH """ print('################################') print('data2=', data) print('################################') """ data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, 1) """ print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') print('data3=', data) print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') """ return data def extract_labels(filename, num_images): """提取labels成一个int64 IDs的vector""" print('Extracting', filename) with gzip.open(filename) as bytestream: bytestream.read(8) buf = bytestream.read(1 * num_images) labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64) return labels def fake_data(num_images): """生成与MNIST的维度相匹配的假数据集""" data = numpy.ndarray( shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS), dtype=numpy.float32) labels = numpy.zeros(shape=(num_images,), dtype=numpy.int64) for image in xrange(num_images): label = image % 2 data[image, :, :, 0] = label - 0.5 labels[image] = label return data, labels def error_rate(predictions, labels): """基于密集预测和稀疏标签返回错误率""" return 100.0 - (100.0 * numpy.sum(numpy.argmax(predictions, 1) == labels) / predictions.shape[0]) def main(argv=None): # pylint: disable=unused-argument if FLAGS.self_test: print('Running self-test.') train_data, train_labels = fake_data(256) validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE) test_data, test_labels = fake_data(EVAL_BATCH_SIZE) num_epochs = 1 else: # 获取数据 train_data_filename = maybe_download('train-images-idx3-ubyte.gz') train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz') test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz') test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz') # 提取数据并转成numpy的array. train_data = extract_data(train_data_filename, 60000) train_labels = extract_labels(train_labels_filename, 60000) test_data = extract_data(test_data_filename, 1000) test_labels = extract_labels(test_labels_filename, 1000) # 产生一个验证集,并分片处理.VALIDATION_SIZE = 5000. validation_data = train_data[:VALIDATION_SIZE, ...] # 0-5000分片 validation_labels = train_labels[:VALIDATION_SIZE] train_data = train_data[VALIDATION_SIZE:TRAIN_MAX+VALIDATION_SIZE, ...] train_labels = train_labels[VALIDATION_SIZE:TRAIN_MAX+VALIDATION_SIZE] num_epochs = NUM_EPOCHS # NUM_EPOCHS = 10 train_size = train_labels.shape[0] """ 训练样本和标签占位声明,每次训练都会喂一个批次的数据, 通过向Run()方法传递{feed_dict}参数""" train_data_node = tf.placeholder(data_type(), shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)) train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,)) eval_data = tf.placeholder(data_type(), shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)) """持久化训练权重,通过{tf.initialize_all_variables().run()}执行操作""" # 5x5 filter, depth 32. conv1_weights = tf.Variable(tf.truncated_normal([5, 5, NUM_CHANNELS, 32], stddev=0.1, seed=SEED, dtype=data_type())) conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type())) conv2_weights = tf.Variable(tf.truncated_normal( [5, 5, 32, 64], stddev=0.1, seed=SEED, dtype=data_type())) conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type())) # fully connected, depth 512. fc1_weights = tf.Variable(tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512], stddev=0.1, seed=SEED, dtype=data_type())) fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type())) fc2_weights = tf.Variable(tf.truncated_normal( [512, NUM_LABELS], stddev=0.1, seed=SEED, dtype=data_type())) fc2_biases = tf.Variable(tf.constant(0.1, shape=[NUM_LABELS], dtype=data_type())) """训练子图和评估子图共用一个模型,通过共享训练参数""" def model(data, train=False): """2维卷积, 使用 'SAME'处理边界 (feature map输出和输入有相同的维数 {strides} 是一个 4D array,他的形状为[image index, y, x, depth]. data=[bitchSize=64, 28, 28, channels=1] conv1_weights=[5, 5, channels=1, filters=32] print("---------initial data---------") print('data=', data) print('conv1_weights=', conv1_weights) """ conv = tf.nn.conv2d(data, conv1_weights, strides=[1, 1, 1, 1], padding='SAME') relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases)) """ 最大池化 ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1], 因为我们不想在batch和channels上做池化 """ pool = tf.nn.max_pool(relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') """first conv-pool conv=[64, 28, 28, filters=32] pool=[64, 14, 14, channels=32] conv2_weights=[5, 5, channels=32, filters=64] print('---------first conv-pool---------') print('pool=', pool) print('conv=', conv) print('conv2_weights=', conv2_weights) """ conv = tf.nn.conv2d(pool, conv2_weights, strides=[1, 1, 1, 1], padding='SAME') relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases)) pool = tf.nn.max_pool(relu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') """second conv-pool conv=[64, 14, 14, filters=64] pool=[64, 7, 7, channels=64] print('----------second conv-pool---------') print('conv=', conv) print('pool=', pool) """ # 重构feature map成2D矩阵,传给全链接网络 pool_shape = pool.get_shape().as_list() reshape = tf.reshape(pool, [pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]]) """ print('-------reshape---------') print('pool_shape=', pool_shape) print('reshape=', reshape) print('fc1_weights=',fc1_weights) """ # 全链接网络层 hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases) # 训练数据时候,采用dropout随机丢弃50%的像素点 if train: hidden = tf.nn.dropout(hidden, 0.5, seed=SEED) return tf.matmul(hidden, fc2_weights) + fc2_biases """ 训练计算公式: logits + cross-entropy loss. 交叉熵:之前使用sigmoid{f(z) = 1/(1+\exp(-z))}函数计算神经元与真实值的欧式距离来判断偏差, 反向去修正权重和偏置,但函数接近1的时候,导数会非常小,学习的速度就会变得非常缓慢。解决这个缺点 就是使用交叉熵。参看http://blog.csdn.net/bixiwen_liu/article/details/52922008 """ logits = model(train_data_node, True) loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=train_labels_node)) # 防止过拟合,对全链接网络的参数进行正则化,常见的是dropout. regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) + tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases)) # 加入一个正则项. loss += 5e-4 * regularizers # 优化器: 每个批次都会增加,并且控制着学习率的衰变 batch = tf.Variable(0, dtype=data_type()) # 每次训练全部样本,学习率都会衰变,使用指数衰变 learning_rate = tf.train.exponential_decay( 0.01, # 开始学习率 batch * BATCH_SIZE, # 数据集大小=批次×每批次数据大小. train_size, # 训练多大更新学习率 0.95, # 衰变率--单位时间内衰变的几率. staircase=True) # true代表训练train_size完更新一次,false代表每个样本都更新 # 使用momentum(动量--它模拟的是物体运动时的惯性,即更新的时候在一定程度上保留之前更新的方向) 优化器. optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9).minimize(loss, global_step=batch) # 计算当前训练minibatch的预测概率. train_prediction = tf.nn.softmax(logits) # 计算测试和验证minibatch上的预测概率 eval_prediction = tf.nn.softmax(model(eval_data)) # 通过feeding多个批次的数据到{eval_data},并从{eval_predictions}获取结果并保存. def eval_in_batches(data, sess): """获取一个小批次数据集的所有预测概率.""" size = data.shape[0] if size < EVAL_BATCH_SIZE: # 数据集小于每批次数据EVAL_BATCH_SIZE=64 raise ValueError("batch size for evals larger than dataset: %d" % size) predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32) # NUM_LABELS=10 for begin in xrange(0, size, EVAL_BATCH_SIZE): # 每次增量为EVAL_BATCH_SIZE,一直到大于size end = begin + EVAL_BATCH_SIZE if end <= size: predictions[begin:end, :] = sess.run(eval_prediction, feed_dict={eval_data: data[begin:end, ...]}) else: batch_predictions = sess.run(eval_prediction, feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]}) predictions[begin:, :] = batch_predictions[begin - size:, :] return predictions # 创建session开始训练数据 st_time = time.clock() start_time = time.time() with tf.Session() as sess: # 初始化所有的训练参数 tf.initialize_all_variables().run() print('Initialized!') # 根据 steps进行循环. # num_epochs = 10(非self_test)或 1(self_test) BATCH_SIZE = 64 train_size=55000 for step in xrange(int(num_epochs * train_size) // BATCH_SIZE): # 计算当前 minibatch 在数据集里的偏移. offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE) batch_data = train_data[offset:(offset + BATCH_SIZE), ...] batch_labels = train_labels[offset:(offset + BATCH_SIZE)] # 向数据字典里喂数据 feed_dict = {train_data_node: batch_data, train_labels_node: batch_labels} # 取数据 _, l, lr, predictions = sess.run([optimizer, loss, learning_rate, train_prediction], feed_dict=feed_dict) if step % EVAL_FREQUENCY == 0: elapsed_time = time.time() - start_time start_time = time.time() print('Step %d (epoch %.2f), %.1f ms' % (step, float(step) * BATCH_SIZE / train_size, 1000 * elapsed_time / EVAL_FREQUENCY)) print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr)) print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels)) print('Validation error: %.1f%%' % error_rate( eval_in_batches(validation_data, sess), validation_labels)) sys.stdout.flush() # 打印最终的结果 test_error = error_rate(eval_in_batches(test_data, sess), test_labels) print('Test error: %.1f%%' % test_error) if FLAGS.self_test: print('test_error', test_error) assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (test_error,) ed_time = time.clock() print('******total train time:', ed_time - st_time) if __name__ == '__main__': tf.app.run()
参考资料
lenet-5 http://blog.csdn.net/xuanyuansen/article/details/41800721
卷积神经网络 http://blog.csdn.net/u011453773/article/details/51597072