POJ 3233_Matrix Power Series

时间:2021-08-27 13:36:52

题意:

求n*n矩阵的幂和

分析:

逐个加起来时间复杂度太高,通过在矩阵中套个矩阵和,再利用矩阵快速幂,最后时间复杂度为O(n3logn)

代码:

#include<cstdio>
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int N= 85;
int n;
struct Matrix
{
int row,cal;
ll m[N][N];
};
Matrix init(Matrix a, ll t)
{
for(int i = 0; i < a.row; i++)
for(int j = 0; j < a.cal; j++)
a.m[i][j] = t;
return a;
}
Matrix mul(Matrix a,Matrix b, int mod)
{
Matrix ans;
ans.row = a.row, ans.cal = b.cal;
ans = init(ans,0);
for(int i = 0; i < a.row; i++)
for(int j = 0; j < b.cal; j++)
for(int k = 0; k < a.cal; k++)
ans.m[i][j] = (ans.m[i][j] + a.m[i][k] * b.m[k][j])%mod;
return ans;
}
Matrix quick_pow(int k, Matrix A, int mod)
{
Matrix I;
I.row = 2 * n, I.cal = n;
I = init(I,0);
for(int i = 0; i < n; i++)
I.m[i][i] = 1;
int cnt = 1;
while(k){
if(k&1) I = mul(A, I, mod);
A = mul(A, A, mod);
k>>=1;
}
return I;
}
int main (void)
{
int k, mod;scanf("%d%d%d",&n,&k,&mod);
Matrix A, I;
A.row= A.cal = 2 * n;
A = init(A, 0);
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
scanf("%d",&A.m[i][j]);
for(int i = n; i < 2 * n; i++){
A.m[i][i] = 1;
A.m[i][i - n] = 1;
}
Matrix res = quick_pow(k+1, A, mod);
int tmp;
for(int i = n; i < 2 * n; i++){
for(int j = 0; j < n; j++){
if(i - j == n) tmp = (res.m[i][j] - 1+mod)%mod;
else tmp = res.m[i][j];
printf("%d%c",tmp, j == n-1?'\n':' ');
}
}
return 0;
}

样例都调不出来,半天才发现自己原来的模板乘法写错了,神奇的竟然用错的模板过了两道题。。。真是连自己都不能信了,懒惰的后果,下次一定要自己重新动手!!


哦因为之前习惯写I∗Ak的形式,所以a.cal=b.cal,现在换个右乘,错误就暴露了。