import java.math.BigInteger;
import java.util.Scanner; public class Main { static BigInteger p,l,r,div; static int n; public static int cmp(BigInteger mid){ BigInteger sum=mid.pow(n); return sum.compareTo(p); } public static BigInteger calc(){ l=BigInteger.ZERO; r=BigInteger.valueOf(1000000000); BigInteger div=BigInteger.valueOf(2); while(l.compareTo(r)<0){ BigInteger mid=l.add(r).divide(div); int fl=cmp(mid); if(fl==0){ return mid; } else if(fl==-1){ l=mid.add(BigInteger.ONE); } else r=mid; } int fl=0; if((fl=cmp(r))==0)return r; if(fl==-1){ while(p.subtract(r.pow(n)).compareTo(BigInteger.ONE)>0)r=r.add(BigInteger.ONE); return r; } else { while(r.pow(n).subtract(p).compareTo(BigInteger.ONE)>0)r=r.subtract(BigInteger.ONE); return r; } } public static void main(String args[]){ Scanner scanner=new Scanner(System.in); while(scanner.hasNext()){ n=scanner.nextInt(); p=scanner.nextBigInteger(); BigInteger ans=calc(); System.out.println(ans); } } }
有种更为优雅的姿势
#include <cstdio> #include <cmath> int main() { double n , m ; int ans ; while ( scanf( "%lf%lf" , &m , &n ) != EOF ) printf( "%.0f\n" , exp(log(n)/m) ) ; }
另附大神证明思路:泰勒公式证明相差不会超过9