I am having troubling summarizing my data the way I want it. I was wondering if someone could point out where I was going wrong. Below is a subset of my data. It came from the General Social Survey and the dimensions of my data set were 2x33500
我正在按照我想要的方式总结我的数据。我想知道是否有人可以指出我哪里出错了。下面是我的数据的子集。它来自一般社会调查,我的数据集的维度是2x33500
class owngun
32997 Middle Class No
8246 Working Class No
13613 Middle Class Yes
31553 Middle Class No
31316 Working Class No
20083 Middle Class Yes
26289 Middle Class No
29363 Middle Class No
25821 Working Class Refused
4996 Middle Class Yes
14641 Middle Class Yes
15523 Middle Class Yes
27361 Working Class Yes
29035 Working Class Yes
25330 Middle Class No
16424 Lower Class Yes
17535 Working Class No
2841 Working Class No
18465 Middle Class No
16629 Middle Class Yes
When I generate a table for my dataset:
当我为我的数据集生成一个表时:
owngun
class Yes No Refused
Lower Class 480 1254 21
Working Class 6519 8752 142
Middle Class 6216 8915 124
Upper Class 391 678 7
No Class 0 1 0
I like these values, but what I'm really interested in is the proportions of yes for each social class. How do I generate a new column of the proportions of yes for each social class?
我喜欢这些价值观,但我真正感兴趣的是每个社会阶层的比例。如何为每个社交类生成一个比例为yes的新列?
I have been trying to use dplyr to do this. Can anyone suggest a way to proceed?
我一直在尝试使用dplyr来做到这一点。谁能建议一种方法继续下去?
Thank you
3 个解决方案
#1
1
You can create a new column using dplyr's mutate
function. I am assuming the name of the dataframe you generated is called owngun. Therefore:
您可以使用dplyr的mutate函数创建一个新列。我假设您生成的数据帧的名称称为owngun。因此:
owngun = mutate(owngun, Yes_percent = Yes/(Yes + No + Refused))
#2
1
Using the bit of data that you provided:
使用您提供的数据位:
table(df$class, df$owngun)/as.vector(table(df$class))
No Refused Yes
Lower Class 0.0000000 0.0000000 1.0000000
Middle Class 0.5000000 0.0000000 0.5000000
Working Class 0.5714286 0.1428571 0.2857143
Data
### Your data
df = read.table(text="class owngun
32997 'Middle Class' No
8246 'Working Class' No
13613 'Middle Class' Yes
31553 'Middle Class' No
31316 'Working Class' No
20083 'Middle Class' Yes
26289 'Middle Class' No
29363 'Middle Class' No
25821 'Working Class' Refused
4996 'Middle Class' Yes
14641 'Middle Class' Yes
15523 'Middle Class' Yes
27361 'Working Class' Yes
29035 'Working Class' Yes
25330 'Middle Class' No
16424 'Lower Class' Yes
17535 'Working Class' No
2841 'Working Class' No
18465 'Middle Class' No
16629 'Middle Class' Yes",
header=TRUE)
#3
0
This solution doesn't use dplyr but how about:
这个解决方案不使用dplyr但是如何:
tab <- table(df)
prop.table(tab, margin = 1)
#1
1
You can create a new column using dplyr's mutate
function. I am assuming the name of the dataframe you generated is called owngun. Therefore:
您可以使用dplyr的mutate函数创建一个新列。我假设您生成的数据帧的名称称为owngun。因此:
owngun = mutate(owngun, Yes_percent = Yes/(Yes + No + Refused))
#2
1
Using the bit of data that you provided:
使用您提供的数据位:
table(df$class, df$owngun)/as.vector(table(df$class))
No Refused Yes
Lower Class 0.0000000 0.0000000 1.0000000
Middle Class 0.5000000 0.0000000 0.5000000
Working Class 0.5714286 0.1428571 0.2857143
Data
### Your data
df = read.table(text="class owngun
32997 'Middle Class' No
8246 'Working Class' No
13613 'Middle Class' Yes
31553 'Middle Class' No
31316 'Working Class' No
20083 'Middle Class' Yes
26289 'Middle Class' No
29363 'Middle Class' No
25821 'Working Class' Refused
4996 'Middle Class' Yes
14641 'Middle Class' Yes
15523 'Middle Class' Yes
27361 'Working Class' Yes
29035 'Working Class' Yes
25330 'Middle Class' No
16424 'Lower Class' Yes
17535 'Working Class' No
2841 'Working Class' No
18465 'Middle Class' No
16629 'Middle Class' Yes",
header=TRUE)
#3
0
This solution doesn't use dplyr but how about:
这个解决方案不使用dplyr但是如何:
tab <- table(df)
prop.table(tab, margin = 1)