I have a Numpy array consisting of a list of lists, representing a two-dimensional array with row labels and column names as shown below:
我有一个由列表组成的Numpy数组,它表示一个二维数组,其中包含行标签和列名,如下所示:
data = array([['','Col1','Col2'],['Row1',1,2],['Row2',3,4]])
I'd like the resulting DataFrame to have Row1 and Row2 as index values, and Col1, Col2 as header values
我希望得到的DataFrame具有Row1和Row2作为索引值,Col1、Col2作为标题值
I can specify the index as follows:
我可以指定如下索引:
df = pd.DataFrame(data,index=data[:,0]),
however I am unsure how to best assign column headers.
但是我不确定如何最好地分配列标题。
2 个解决方案
#1
144
You need to specify data
, index
and columns
to DataFrame
constructor, as in:
需要向DataFrame构造函数指定数据、索引和列,如:
>>> pd.DataFrame(data=data[1:,1:], # values
... index=data[1:,0], # 1st column as index
... columns=data[0,1:]) # 1st row as the column names
edit: as in the @joris comment, you may need to change above to np.int_(data[1:,1:])
to have correct data type.
编辑:如@joris注释中所示,您可能需要将上面的内容更改为np.int_(data[1:,1:]),以获得正确的数据类型。
#2
13
I agree with Joris; it seems like you should be doing this differently, like with numpy record arrays. Modifying "option 2" from this great answer, you could do it like this:
我同意尤里斯;看起来您应该采用不同的方法,比如使用numpy记录数组。从这个伟大的答案中修改“选项2”,你可以这样做:
import pandas
import numpy
dtype = [('Col1','int32'), ('Col2','float32'), ('Col3','float32')]
values = numpy.zeros(20, dtype=dtype)
index = ['Row'+str(i) for i in range(1, len(values)+1)]
df = pandas.DataFrame(values, index=index)
#1
144
You need to specify data
, index
and columns
to DataFrame
constructor, as in:
需要向DataFrame构造函数指定数据、索引和列,如:
>>> pd.DataFrame(data=data[1:,1:], # values
... index=data[1:,0], # 1st column as index
... columns=data[0,1:]) # 1st row as the column names
edit: as in the @joris comment, you may need to change above to np.int_(data[1:,1:])
to have correct data type.
编辑:如@joris注释中所示,您可能需要将上面的内容更改为np.int_(data[1:,1:]),以获得正确的数据类型。
#2
13
I agree with Joris; it seems like you should be doing this differently, like with numpy record arrays. Modifying "option 2" from this great answer, you could do it like this:
我同意尤里斯;看起来您应该采用不同的方法,比如使用numpy记录数组。从这个伟大的答案中修改“选项2”,你可以这样做:
import pandas
import numpy
dtype = [('Col1','int32'), ('Col2','float32'), ('Col3','float32')]
values = numpy.zeros(20, dtype=dtype)
index = ['Row'+str(i) for i in range(1, len(values)+1)]
df = pandas.DataFrame(values, index=index)