I have a mx1 array, a, that contains some values. Moreover, I have a nxk array, say b, that contains indices between 0 and m.
我有一个包含一些值的mx1数组a。此外,我有一个nxk数组,比如b,包含0到m之间的索引。
Example:
a = np.array((0.1, 0.2, 0.3))
b = np.random.randint(0, 3, (4, 4))
For every index value in b I want to get the corresponding value from a. I can do it with a loop:
对于b中的每个索引值,我想从a获得相应的值。我可以用循环来做到这一点:
c = np.zeros_like(b).astype('float')
n, k = b.shape
for i in range(n):
for j in range(k):
c[i, j] = a[b[i, j]]
Is there any built-it numpy function or trick that is more elegant? This approach looks a little dumb to me. PS: originally, a and b are Pandas objects if that helps.
是否有任何内置的numpy功能或技巧更优雅?这种方法对我来说有点愚蠢。 PS:最初,a和b是Pandas对象,如果有帮助的话。
2 个解决方案
#1
14
>>> a
array([ 0.1, 0.2, 0.3])
>>> b
array([[0, 0, 1, 1],
[0, 0, 1, 1],
[0, 1, 1, 0],
[0, 1, 0, 1]])
>>> a[b]
array([[ 0.1, 0.1, 0.2, 0.2],
[ 0.1, 0.1, 0.2, 0.2],
[ 0.1, 0.2, 0.2, 0.1],
[ 0.1, 0.2, 0.1, 0.2]])
Tada! It's just a[b]
. (Also, you probably wanted the upper bound on the randint
call to be 3
.)
田田!这只是一个[b]。 (另外,你可能希望randint调用的上限为3.)
#2
1
Try iteration with a numpy.flatiter
object:
尝试使用numpy.flatiter对象进行迭代:
a = np.array((0.1, 0.2, 0.3))
b = np.random.randint(0, 3, (4, 4))
c = np.array([a[i] for i in b.flat]).reshape(b.shape)
print(c)
array([[ 0.2, 0.2, 0.2, 0.1],
[ 0.3, 0.3, 0.2, 0.1],
[ 0.2, 0.1, 0.3, 0.3],
[ 0.3, 0.3, 0.3, 0.1]])
#1
14
>>> a
array([ 0.1, 0.2, 0.3])
>>> b
array([[0, 0, 1, 1],
[0, 0, 1, 1],
[0, 1, 1, 0],
[0, 1, 0, 1]])
>>> a[b]
array([[ 0.1, 0.1, 0.2, 0.2],
[ 0.1, 0.1, 0.2, 0.2],
[ 0.1, 0.2, 0.2, 0.1],
[ 0.1, 0.2, 0.1, 0.2]])
Tada! It's just a[b]
. (Also, you probably wanted the upper bound on the randint
call to be 3
.)
田田!这只是一个[b]。 (另外,你可能希望randint调用的上限为3.)
#2
1
Try iteration with a numpy.flatiter
object:
尝试使用numpy.flatiter对象进行迭代:
a = np.array((0.1, 0.2, 0.3))
b = np.random.randint(0, 3, (4, 4))
c = np.array([a[i] for i in b.flat]).reshape(b.shape)
print(c)
array([[ 0.2, 0.2, 0.2, 0.1],
[ 0.3, 0.3, 0.2, 0.1],
[ 0.2, 0.1, 0.3, 0.3],
[ 0.3, 0.3, 0.3, 0.1]])