bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

时间:2022-09-27 12:38:01

【bzoj3238】[Ahoi2013]差异

Description

bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

Input

一行,一个字符串S

Output

一行,一个整数,表示所求值

Sample Input

cacao

Sample Output

54

题解:

bzoj3238 [Ahoi2013]差异 后缀数组+单调栈

任意两个字符串的lcp是什么,就是如

a,b  那么若a==b 那么为len(a)

  否则设sa[a]<sa[b] 那么为min(height[sa[a]+1-------sa[b]])

 #include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio> #define N 500007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if (ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n;
int stk[N],f[N],g[N];
struct SA
{
char s[N];
int a[N],b[N],cnta[N],cntb[N],tsa[N],height[N],sa[N],rk[N*];
void Get_SA()
{
for (int i=;i<=;i++)cnta[i]=;
for (int i=;i<=n;i++)cnta[(int)s[i]]++;
for (int i=;i<=;i++)cnta[i]+=cnta[i-];
for (int i=n;i>=;i--)sa[cnta[(int)s[i]]--]=i;
rk[sa[]]=;
for (int i=;i<=n;i++)rk[sa[i]]=rk[sa[i-]]+(s[sa[i]]!=s[sa[i-]]);
for (int i=;rk[sa[n]]!=n;i<<=)
{
for (int j=;j<=n;j++)a[j]=rk[j],b[j]=rk[j+i];
for (int j=;j<=n;j++)cnta[j]=cntb[j]=;
for (int j=;j<=n;j++)cnta[a[j]]++,cntb[b[j]]++;
for (int j=;j<=n;j++)cnta[j]+=cnta[j-],cntb[j]+=cntb[j-];
for (int j=n;j>=;j--)tsa[cntb[b[j]]--]=j;
for (int j=n;j>=;j--)sa[cnta[a[tsa[j]]]--]=tsa[j];
rk[sa[]]=;
for (int j=;j<=n;j++)
rk[sa[j]]=rk[sa[j-]]+(a[sa[j]]!=a[sa[j-]]||b[sa[j]]!=b[sa[j-]]);
}
}
void Get_Height()
{
int len=;
for (int i=;i<=n;i++)
{
if (len)len--;
while(s[i+len]==s[sa[rk[i]-]+len])len++;
height[rk[i]]=len;
}
}
}S;
int main()
{
scanf("%s",S.s+);
n=strlen(S.s+);
ll ans=;
for (int i=;i<=n;i++)
{
ans+=(ll)(i-)*i;
ans+=(ll)i*(i-)/;
}
S.Get_SA();
S.Get_Height();
int tot=;
for (int i=;i<=n;i++)
{
while(tot>&&S.height[i]<S.height[stk[tot]])
f[stk[tot--]]=i-;
stk[++tot]=i;
}
while(tot)f[stk[tot--]]=n;
tot=;
for (int i=n;i>=;i--)
{
while(tot>&&S.height[i]<=S.height[stk[tot]])g[stk[tot--]]=i+;
stk[++tot]=i;
}
while(tot)g[stk[tot--]]=;
for (int i=;i<=n;i++)
ans-=(ll)S.height[i]*(ll)(f[i]-i+)*(ll)(i-g[i]+)*;
printf("%lld\n",ans);
}