补博客!
首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了
for (int i=1;i<=n;i++) ans=ans+i*(n-1);
那么我们考虑剩下的部分应该怎么求解!
首先这里有一个性质。对于任意两个后缀\(i,j\),他们的\(lcp\)长度是他们对应的\(rank\)之间的\(height\)的\(min\) (左开右闭)
或者这样说
\(lcp(i,j) = min(height[rank[i]+1],height[rank[i]+2].....,height[rank[j]]) 其中rank[i]<rank[j]\)
那么对于这个题,我们就可以直接维护出每个\(height\)作为最小值的区间,然后用他的区间个乘上贡献即可(但是具体这里求的时候需要仔细想想,因为那个左开右闭的区间,假设右边能选的端点是\(r[i]-l+1\),那么合法的右端点实际上是由\(i-l[i]+1\)因为,能覆盖到\(l[i]\)这个\(height\)的点实际上是\(l[i]-1\)。)
总之就是比较难理解啊
for (int i=1;i<=n;i++) ans=ans-2ll*(r[i]-i+1)*(i-l[i]+1)*height[i];
那么现在的问题就是应该怎么求\(l[i]和r[i]\)呢?
QWQ这貌似是单调栈的经典应用?
直接从左到右,从右到左扫两遍即可.
这里有一个很好的防止计算重复的方法
就是我们从左到右扫维护的栈是单调的。然后从右到左不单调(非严格)
或者说,一遍单调,一遍不单调,即可解决重复的问题了!
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk makr_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e6+1e2;
struct Node{
int val,pos;
};
int wb[maxn],sa[maxn];
Node s[maxn];
int l[maxn],r[maxn];
int rk[maxn],h[maxn],height[maxn];
int tmp[maxn];
int n,m;
char a[maxn];
int ans;
void getsa()
{
int *x = rk,*y = tmp;
int s = 128;
int p = 0;
for (int i=1;i<=n;i++) x[i]=a[i],y[i]=i;
for (int i=1;i<=s;i++) wb[i]=0;
for (int i=1;i<=n;i++) wb[x[y[i]]]++;
for (int i=1;i<=s;i++) wb[i]+=wb[i-1];
for (int i=n;i>=1;i--) sa[wb[x[y[i]]]--] = y[i];
for (int j=1;p<n;j<<=1)
{
p=0;
for (int i=n-j+1;i<=n;i++) y[++p]=i;
for (int i=1;i<=n;i++) if (sa[i]>j) y[++p]=sa[i]-j;
for (int i=1;i<=s;i++) wb[i]=0;
for (int i=1;i<=n;i++) wb[x[y[i]]]++;
for (int i=1;i<=s;i++) wb[i]+=wb[i-1];
for (int i=n;i>=1;i--) sa[wb[x[y[i]]]--] =y[i];
swap(x,y);
p=1;
x[sa[1]]=1;
for (int i=2;i<=n;i++)
{
x[sa[i]] = (y[sa[i-1]]==y[sa[i]] && y[sa[i]+j]==y[sa[i-1]+j]) ? p : ++p;
}
s=p;
}
for (int i=1;i<=n;i++) rk[sa[i]]=i;
h[0]=0;
for (int i=1;i<=n;i++)
{
h[i]=max(h[i-1]-1,(long long)0);
while (i+h[i]<=n && sa[rk[i]-1]+h[i]<=n && a[i+h[i]]==a[sa[rk[i]-1]+h[i]]) h[i]++;
}
for (int i=1;i<=n;i++) height[i] = h[sa[i]];
}
int top;
signed main()
{
scanf("%s",a+1);
n = strlen(a+1);
getsa();
for (int i=1;i<=n;i++) ans=ans+i*(n-1);
l[1]=1;
s[++top].val=height[1];
s[1].pos=1;
for (int i=2;i<=n;i++)
{
while (top>=1 && s[top].val>=height[i]) top--;
if (!top) l[i]=1;
else l[i]=s[top].pos+1;
s[++top].val=height[i];
s[top].pos=i;
}
memset(s,0,sizeof(s));
top=1;
r[n]=n;
s[top].val=height[n];
s[top].pos=n;
for (int i=n-1;i>=1;i--)
{
while (top>=1 && s[top].val>height[i]) top--;
if (!top) r[i]=n;
else r[i]=s[top].pos-1;
s[++top].val=height[i];
s[top].pos=i;
}
for (int i=1;i<=n;i++) ans=ans-2ll*(r[i]-i+1)*(i-l[i]+1)*height[i];
cout<<ans;
return 0;
}
洛谷4248 AHOI2013差异 (后缀数组SA+单调栈)的更多相关文章
-
洛谷P4248 [AHOI2013]差异(后缀自动机求lcp之和)
题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的 ...
-
洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找)
洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1333275 这个题不是很 ...
-
bzoj 3238: [Ahoi2013]差异 -- 后缀数组
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...
-
【BZOJ3238】[Ahoi2013]差异 后缀数组+单调栈
[BZOJ3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
-
[bzoj3238][Ahoi2013]差异_后缀数组_单调栈
差异 bzoj-3238 Ahoi-2013 题目大意:求任意两个后缀之间的$LCP$的和. 注释:$1\le length \le 5\cdot 10^5$. 想法: 两个后缀之间的$LCP$和显然 ...
-
[AHOI2013] 差异 - 后缀数组,单调栈
[AHOI2013] 差异 Description 求 \(\sum {len(T_i) + len(T_j) - 2 lcp(T_i,T_j)}\) 的值 其中 \(T_i (i = 1,2,... ...
-
BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]
3238: [Ahoi2013]差异 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2326 Solved: 1054[Submit][Status ...
-
洛谷P3763 [TJOI2017]DNA(后缀数组 RMQ)
题意 题目链接 Sol 这题打死我也不会想到后缀数组的,应该会全程想AC自动机之类的吧 但知道这题能用后缀数组做之后应该就不是那么难了 首先把\(S\)和\(S0\)拼到一起跑,求出Height数组 ...
-
bzoj3238 [Ahoi2013]差异 后缀数组+单调栈
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Ou ...
随机推荐
-
invalidate()和postInvalidate() 的区别及使用
Android提供了Invalidate方法实现界面刷新,但是Invalidate不能直接在线程中调用,因为他是违背了单线程模型:Android UI操作并不是线程安全的,并且这些操作必须在UI线程中 ...
-
vim添加或删除多行注释
一.多行注释的添加 1. vim的命令模式下(ESC 进入命令模式): 2. 按CTRL+V进入可视化模式(VISUAL BLOCK): 注意:vim命令模式下v进入的是visual模式,ctrl+v ...
-
JS魔法堂:函数重载 之 获取变量的数据类型
Brief 有时我们需要根据入参的数据类型来决定调用哪个函数实现,就是说所谓的函数重载(function overloading).因为JS没有内置函数重载的特性,正好给机会我们思考和实现一套这样的机 ...
-
为什么 as sysdba着陆方法oracle数据库,为什么刚刚输入username和password我们都可以登录?
事实上,这是oracle问题数据库的身份验证方法 该 sqlnet.ora在文件 SQLNET.AUTHENTICATION_SERVICES= (NTS) 变 SQLNET.AUTHENTICATI ...
-
CodeForces 725A
A. Jumping Ball time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
-
IOS中Hybird中数据驱动与脚本驱动的实现
现在Hybird这块,网上也有很多文章,最近小有研究了下,分享给大家. 什么是Hybird技术? 1.一般是指WebView和Native技术混合而成的一套技术方案 2.也可以理解成,非Native技 ...
-
我的linux学习之路——(一)
prompt:命令提示符 命令: command options...... arguments...... 选项: 短选项 长选项 带参数的选项 参数: list----ls 列出,列表 列出制定路 ...
-
jquery 滚动事件
$(window).scroll(function () { if ($(window).scrollTop() >50) { alert('show!!'); }});
-
CAP 2.5 版本中的新特性
前言 首先,恭喜 CAP 已经成为 eShopOnContainers 官方推荐的生产环境可用的 EventBus 之一. 自从上次 CAP 2.4 版本发布 以来,已经过去了几个月的时间,关注的朋友 ...
-
PHP下使用Redis消息队列发布微博(复制)
phpRedisAdmin :github地址 图形化管理界面 git clone https://github.com/ErikDubbelboer/phpRedisAdmin.git cd ph ...