参考:
用 Doc2Vec 得到文档/段落/句子的向量表达
https://radimrehurek.com/gensim/models/doc2vec.html
Gensim Doc2vec Tutorial on the IMDB Sentiment Dataset
基于gensim的Doc2Vec简析
Gensim进阶教程:训练word2vec与doc2vec模型
用gensim doc2vec计算文本相似度
转自:
gensim doc2vec + sklearn kmeans 做文本聚类
原文显示太乱 为方便看摘录过来。。
用doc2vec做文本相似度,模型可以找到输入句子最相似的句子,然而分析大量的语料时,不可能一句一句的输入,语料数据大致怎么分类也不能知晓。于是决定做文本聚类。 选择kmeans作为聚类方法。前面doc2vec可以将每个段文本的向量计算出来,然后用kmeans就很好操作了。 选择sklearn库中的KMeans类。 程序如下:
# coding:utf-8 import sys import gensim import numpy as np from gensim.models.doc2vec import Doc2Vec, LabeledSentence from sklearn.cluster import KMeans TaggededDocument = gensim.models.doc2vec.TaggedDocument def get_datasest(): with open("out/text_dict_cut.txt", 'r') as cf: docs = cf.readlines() print len(docs) x_train = [] #y = np.concatenate(np.ones(len(docs))) for i, text in enumerate(docs): word_list = text.split(' ') l = len(word_list) word_list[l-1] = word_list[l-1].strip() document = TaggededDocument(word_list, tags=[i]) x_train.append(document) return x_train def train(x_train, size=200, epoch_num=1): model_dm = Doc2Vec(x_train,min_count=1, window = 3, size = size, sample=1e-3, negative=5, workers=4) model_dm.train(x_train, total_examples=model_dm.corpus_count, epochs=100) model_dm.save('model/model_dm') return model_dm def cluster(x_train): infered_vectors_list = [] print "load doc2vec model..." model_dm = Doc2Vec.load("model/model_dm") print "load train vectors..." i = 0 for text, label in x_train: vector = model_dm.infer_vector(text) infered_vectors_list.append(vector) i += 1 print "train kmean model..." kmean_model = KMeans(n_clusters=15) kmean_model.fit(infered_vectors_list) labels= kmean_model.predict(infered_vectors_list[0:100]) cluster_centers = kmean_model.cluster_centers_ with open("out/own_claasify.txt", 'w') as wf: for i in range(100): string = "" text = x_train[i][0] for word in text: string = string + word string = string + '\t' string = string + str(labels[i]) string = string + '\n' wf.write(string) return cluster_centers if __name__ == '__main__': x_train = get_datasest() model_dm = train(x_train) cluster_centers = cluster(x_train)