微软提供的人脸识别服务可检测图片中一个或者多个人脸,并为人脸标记出边框,同时还可获得基于机器学习技术做出的面部特征预测。可支持的人脸功能有:年龄、性别、头部姿态、微笑检测、胡须检测以及27个面部重要特征点位置等。FaceAPI 提供两个主要功能: 人脸检测和识别
目录:
- 申请subscription key
- 示例效果
- 开发示例
- AForge.Net
申请订阅号
- 申请试用subscription key, 地址 https://www.microsoft.com/cognitive-services/en-us/sign-up
- 收费信息如下:
示例效果
- winform示例版,调用微软提供的SDK,见下面介绍
- 微信集成版, 如下图,开发过程中使用 http 直接调用
开发过程
- 参见:https://www.azure.cn/cognitive-services/en-us/face-api/documentation/get-started-with-face-api/GettingStartedwithFaceAPIinCSharp
- 在VS工程的NuGet Package Manager 管理窗口,程序包源:nuget.org, 搜索 Microsoft.ProjectOxford.Face ,进行安装
- sdk调用示例代码: 图片转byte[]
using (Stream s = new MemoryStream(bytes))
{
var requiredFaceAttributes = new FaceAttributeType[] {
FaceAttributeType.Age,
FaceAttributeType.Gender,
FaceAttributeType.Smile,
FaceAttributeType.FacialHair,
FaceAttributeType.HeadPose,
FaceAttributeType.Glasses
};
var faces = await Utils.FaceClient.DetectAsync(s,
returnFaceLandmarks: true,
returnFaceAttributes: requiredFaceAttributes);
} 也可直接使用http请求,参见:https://dev.projectoxford.ai/docs/services/563879b61984550e40cbbe8d/operations/563879b61984550f30395236
参数信息如下:
-
http post 示例代码:
string URL = "你图片的url"; var client = new HttpClient();
var queryString = HttpUtility.ParseQueryString(string.Empty); // Request headers
client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "你申请的key"); // Request parameters
queryString["returnFaceId"] = "true";
queryString["returnFaceLandmarks"] = "false";
queryString["returnFaceAttributes"] = "age,gender,smile";
var uri = "https://api.projectoxford.ai/face/v1.0/detect?" + queryString; HttpResponseMessage response;
byte[] byteData = Encoding.UTF8.GetBytes("{\"url\":\"" + URL + "\"}"); using (var content = new ByteArrayContent(byteData))
{
content.Headers.ContentType = new MediaTypeHeaderValue("application/json"); var task = client.PostAsync(uri, content);
response = task.Result; var task1 = response.Content.ReadAsStringAsync();
string JSON = task1.Result;
} 人脸识别http参数如下:(注意:要识别出人脸的身份,你必须先定义person,参见 personGroup 、Person介绍 https://www.azure.cn/cognitive-services/en-us/face-api/documentation/face-api-how-to-topics/howtoidentifyfacesinimage)
- 示例代码
var client = new HttpClient();
var queryString = HttpUtility.ParseQueryString(string.Empty);
client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "XXX");
var uri = "https://api.projectoxford.ai/face/v1.0/identify ";
HttpResponseMessage response;
byte[] byteData = Encoding.UTF8.GetBytes("{\"faceIds\":[\"XXX\"],\"personGroupId\":\"XXX\",\"maxNumOfCandidatesReturned\":5}"); using (var content = new ByteArrayContent(byteData))
{
content.Headers.ContentType = new MediaTypeHeaderValue("application/json"); var task = client.PostAsync(uri, content);
response = task.Result; var task1 = response.Content.ReadAsStringAsync();
string JSON = task1.Result;
} - 根据人脸信息识别出身份后,获取个人信息,参数如下:
- 示例代码
var client = new HttpClient();
var queryString = HttpUtility.ParseQueryString(string.Empty);
client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "你申请的key");
var uri = "https://api.projectoxford.ai/face/v1.0/persongroups/你上传的分组/persons/" + personID; var task = client.GetStringAsync(uri);
var response = task.Result;
return JsonConvert.DeserializeObject<Person>(task.Result);
AForge.Net
- AForge.Net是一个专门为开发者和研究者基于C#框架设计的,他包括计算机视觉与人工智能,图像处理,神经网络,遗传算法,机器学习,模糊系统,机器人控制等领域, 我主要使用这个类库中的vedio 来启动笔记本摄像头进行图片抓拍
- 类库下载地址: http://www.aforgenet.com/framework/downloads.html
- 添加控件: 在工具箱中添加AForge.Control,VideoSourcePlayer就是我们要用的控件
- 示例代码如下:声明变量
FilterInfoCollection videoDevices;
VideoCaptureDevice videoSource;
public int selectedDeviceIndex = ; - 启动摄像头示例代码
videoDevices = new FilterInfoCollection(FilterCategory.VideoInputDevice);
selectedDeviceIndex = ;
videoSource = new VideoCaptureDevice(videoDevices[selectedDeviceIndex].MonikerString);//连接摄像头。
videoSource.VideoResolution = videoSource.VideoCapabilities[selectedDeviceIndex];
videoSourcePlayer1.VideoSource = videoSource;
// set NewFrame event handler
videoSourcePlayer1.Start(); -
抓拍示代码
if (videoSource == null)
return;
Bitmap bitmap = videoSourcePlayer1.GetCurrentVideoFrame();
string fileName = string.Format("{0}.jpg", DateTime.Now.ToString("yyyyMMddHHmmssfff"));
this.filePath = string.Format("c:\\temp\\{0}", fileName);
bitmap.Save(this.filePath, ImageFormat.Jpeg);
this.labelControl1.Text = string.Format("存储目录:{0}", this.filePath);
bitmap.Dispose();
videoDevices.Clear(); -
窗体关闭事件
if (this.videoSource != null)
{
if (this.videoSource.IsRunning)
{
this.videoSource.Stop();
}
} 示例效果