1 /*程序的版权和版本声明部分:
**Copyright(c) 2016,电子科技大学本科生
**All rights reserved.
**文件名:单偶数N阶魔方矩阵
**程序作用:单偶数N阶魔方矩阵
**作者:Amoshen
**完成日期:2016.11.2
**版本号:V1.0
*/
#include<iostream> using namespace std; #define MAX_SIZE 100 int main(void)
{
int m,u,n,ROW,CIE,ROW1,CIE1,i,j;//ROW为行,CIE为列,ROW1为临时行变量,CIE1为临时列变量,i,j分别表示行变量和列变量
int MAGIC[MAX_SIZE][MAX_SIZE] = {},b[MAX_SIZE][MAX_SIZE] = {},EX[MAX_SIZE][MAX_SIZE] = {}; cout << "请输入m,注意:n = 2*(2 * m + 1),即m输入1,得到一个6阶魔方矩阵"<<endl;
cout << "m = ";
cin >> m; n = *( * m + );
u = n/;
//先填充第一个u*u魔阵
ROW = ;
CIE = (u - )/; MAGIC[ROW][CIE] = ;
b[ROW][CIE] = ; for(i = ;i <= (u*u);i++)
{
ROW1 = ROW - ;
CIE1 = CIE + ; if(ROW1 < )
{
ROW1 = u - ;
}
if(CIE1 > (u - ))
{
CIE1 = ;
} if(b[ROW1][CIE1] == )
{
ROW = ROW1;
CIE = CIE1;
MAGIC[ROW][CIE] = i;
b[ROW][CIE] = ;
}
else
{
ROW = ROW + ;
if(ROW == u)
{
ROW = ;
}
MAGIC[ROW][CIE] = i;
b[ROW][CIE] = ;
}
}
//再填充第四个魔阵(右下角)
for(i = u;i < *u;i++)
{
for(j = u;j < *u;j++)
{
MAGIC[i][j] = MAGIC[i-u][j-u] + u*u;
}
}
//右上角
for(i = ;i < u;i++)
{
for(j = u;j < *u;j++)
{
MAGIC[i][j] = MAGIC[i+u][j] + u*u;
}
}
//左下角
for(i = u;i < *u;i++)
{
for(j = ;j < u;j++)
{
MAGIC[i][j] = MAGIC[i-u][j+u] + u*u;
}
}
//右上角与右下角的交换
for(i = ;i < u;i++)
{
for(j = *u-;j > (*u-m);j--)
{
EX[i][j] = MAGIC[i][j];
MAGIC[i][j] = MAGIC[i+u][j];
}
}
for(i = ;i < u;i++)
{
for(j = *u-;j > (*u-m);j--)
{
MAGIC[i+u][j] = EX[i][j];
}
}
//左上角与左下角的交换
for(i = ;i < u;i++)
{
if(i == (u-)/)
{
for(j = ;j <= m;j++)
{
EX[i][j] = MAGIC[i][j];
MAGIC[i][j] = MAGIC[i+u][j];
}
}
else
{
for(j = ;j < m;j++)
{
EX[i][j] = MAGIC[i][j];
MAGIC[i][j] = MAGIC[i+u][j];
}
}
}
for(i = ;i < u;i++)
{
if(i == (u-)/)
{
for(j = ;j <= m;j++)
{
MAGIC[i+u][j] = EX[i][j];
}
}
else
{
for(j = ;j < m;j++)
{
MAGIC[i+u][j] = EX[i][j];
}
}
} cout << n << "阶魔方矩阵:" <<endl; for(i = ;i < *u;i++)
{
for(j = ;j < *u;j++)
{
cout << MAGIC[i][j] <<'\t';
}
cout <<endl;
} return ;
}
原理
因为是单偶数n = 2*(2*m + 1),如果把整个魔方矩阵均分为4份,每份都是奇数阶,利用奇数阶的算法来填充。
(如图)
完成后的效果图
把最右边m-1列中B与C对应相交换
A的中间一行,从第二列开始,m格与对应D交换,其余从最左边开始m格与D对应交换
交换后的最终效果图