pytorch 预训练模型读取修改相关参数的填坑问题

时间:2022-01-25 10:45:24

pytorch 预训练模型读取修改相关参数的填坑

修改部分层,仍然调用之前的模型参数。

?
1
2
3
4
5
6
7
8
resnet = resnet50(pretrained=False)
resnet.load_state_dict(torch.load(args.predir))
 
res_conv31 = Bottleneck_dilated(1024, 256,dilated_rate = 2)
print("---------------------",res_conv31)
print("---------------------",resnet.layer3[1])
 
res_conv31.load_state_dict(resnet.layer3[1].state_dict())

网络预训练模型与之前的模型对应不上,名称差个前缀

?
1
2
3
4
5
6
7
8
9
10
11
12
13
model_dict = model.state_dict()
# print(model_dict)
pretrained_dict = torch.load("/yzc/reid_testpcb/se_resnet50-ce0d4300.pth")
keys = []
for k, v in pretrained_dict.items():
       keys.append(k)
i = 0
for k, v in model_dict.items():
    if v.size() == pretrained_dict[keys[i]].size():
         model_dict[k] = pretrained_dict[keys[i]]
         #print(model_dict[k])
         i = i + 1
model.load_state_dict(model_dict)

最后是修改参数名拿来用的,

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from collections import OrderedDict
pretrained_dict = torch.load('premodel')
 
new_state_dict = OrderedDict()
 
# for k, v in mgn_state_dict.items():
#     name = k[7:]  # remove `module.`
#     new_state_dict[name] = v
# self.model = self.model.load_state_dict(new_state_dict)
 
for k, v in pretrained_dict.items():
    name = "model.module."+k   # remove `module.`
    # print(name)
    new_state_dict[name] = v
self.model.load_state_dict(new_state_dict)

pytorch:加载预训练模型中的部分参数,并固定该部分参数(真实有效)

大家在学习pytorch时,可能想利用pytorch进行fine-tune,但是又烦恼于参数的加载问题。下面我将讲诉我的使用心得。

Step1: 加载预训练模型,并去除需要再次训练的层

?
1
2
3
4
5
6
7
#注意:需要重新训练的层的名字要和之前的不同。
model=resnet()#自己构建的模型,以resnet为例
model_dict = model.state_dict()
pretrained_dict = torch.load('xxx.pkl')
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)

Step2:固定部分参数

?
1
2
3
4
5
#k是可训练参数的名字,v是包含可训练参数的一个实体
#可以先print(k),找到自己想进行调整的层,并将该层的名字加入到if语句中:
for k,v in model.named_parameters():
    if k!='xxx.weight' and k!='xxx.bias' :
        v.requires_grad=False#固定参数

Step3:训练部分参数

?
1
2
#将要训练的参数放入优化器
optimizer2=torch.optim.Adam(params=[model.xxx.weight,model.xxx.bias],lr=learning_rate,betas=(0.9,0.999),weight_decay=1e-5)

Step4:检查部分参数是否固定

debug之后,程序正常运行,最好检查一下网络的参数是否真的被固定了,如何没固定,网络的状态接近于重新训练,可能会导致网络性能不稳定,也没办法得到想要得到的性能提升。

?
1
2
3
for k,v in model.named_parameters():
   if k!='xxx.weight' and k!='xxx.bias' :
   print(v.requires_grad)#理想状态下,所有值都是False

需要注意的是,操作失误最大的影响是,loss函数几乎不会发生变化,一直处于最开始的状态,这很可能是因为所有参数都被固定了。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/chanbo8205/article/details/89923453