luogu P2726 [SHOI2005]树的双中心

时间:2022-03-17 03:07:05

传送门

强行安利->巨佬题解

如果只有一个点贡献答案,那么答案显然是这棵树的带权重心,这个是可以\(O(n)\)求的.一个\(O(n^2)\)暴力是枚举两个集合之间的分界边,然后对这两个集合分别算答案,合并更新

考虑优化此过程,一个结论是一棵树内,只有\(size_i*2>size_{root}\)的点才有可能成为带权重心,并且这一类点个数不超过2个 不会证啊qwq,感性理解一下吧.所以每次枚举是哪条边为分界线,然后把树分成两部分,从每个树的根开始算答案,如果\(size_i*2\le size_{root}\)就停止

注意要扣除下面子树对上面子树的\(size\)的贡献再做

更多细节详见代码

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5) using namespace std;
const int N=50000+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[N<<1],nt[N<<1],hd[N],tot=1;
il void add(int x,int y)
{
++tot,to[tot]=y,nt[tot]=hd[x],hd[x]=tot;
++tot,to[tot]=x,nt[tot]=hd[y],hd[y]=tot;
}
int n,fa[N],sz[N],de[N],g[N],fc[N],sc[N],no,ans=1<<30;
void dfs(int x)
{
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y==fa[x]) continue;
fa[y]=x,de[y]=de[x]+1,dfs(y),sz[x]+=sz[y],g[x]+=g[y]+sz[y];
if(sz[fc[x]]<=sz[y]) sc[x]=fc[x],fc[x]=y;
else if(sz[sc[x]]<sz[y]) sc[x]=y;
}
}
void cal(int x,int nw,int size,int &an)
{
an=min(an,nw);
int y=sz[fc[x]]<sz[sc[x]]||fc[x]==no?sc[x]:fc[x];
if(sz[y]*2>size) cal(y,nw-sz[y]+size-sz[y],size,an);
}
void work(int x)
{
for(int i=hd[x];i;i=nt[i])
{
int y=to[i];
if(y!=fa[x])
{
no=y;
for(int xx=x;xx;xx=fa[xx]) sz[xx]-=sz[y];
int aa=1<<30,bb=1<<30;
cal(1,g[1]-g[y]-de[y]*sz[y],sz[1],aa),cal(y,g[y],sz[y],bb);
for(int xx=x;xx;xx=fa[xx]) sz[xx]+=sz[y];
ans=min(ans,aa+bb);
work(y);
}
}
} int main()
{
n=rd();
for(int i=1;i<n;i++) add(rd(),rd());
for(int i=1;i<=n;i++) sz[i]=rd();
dfs(1),work(1);
printf("%d\n",ans);
return 0;
}

luogu P2726 [SHOI2005]树的双中心的更多相关文章

  1. BZOJ3302&colon; &lbrack;Shoi2005&rsqb;树的双中心

    BZOJ3302: [Shoi2005]树的双中心 https://lydsy.com/JudgeOnline/problem.php?id=3302 分析: 朴素算法 : 枚举边,然后在两个连通块内 ...

  2. 【BZOJ3302】&lbrack;Shoi2005&rsqb;树的双中心 DFS

    [BZOJ3302][Shoi2005]树的双中心 Description Input 第一行为N,1<N<=50000,表示树的节点数目,树的节点从1到N编号.接下来N-1行,每行两个整 ...

  3. 题解-SHOI2005 树的双中心

    SHOI2005 树的双中心 给树 \(T=(V,E)(|V|=n)\),树高为 \(h\),\(w_u(u\in V)\).求 \(x\in V,y\in V:\left(\sum_{u\in V} ...

  4. 【BZOJ】3302&colon; &lbrack;Shoi2005&rsqb;树的双中心 &amp&semi;&amp&semi; 2103&colon; Fire 消防站 &amp&semi;&amp&semi; 2447&colon; 消防站

    [题意]给定带点权树,要求选择两个点x,y,满足所有点到这两个点中较近者的距离*点权的和最小.n<=50000,h<=100. [算法]树的重心 [题解]代码参考自:cgh_Andy 观察 ...

  5. 【洛谷 P2726】 &lbrack;SHOI2005&rsqb;树的双中心(树的重心)

    先考虑一个\(O(N^2)\)做法. 设选的两个点为\(x,y\),则一定可以将树分成两个集合\(A,B\),使得\(A\)集合所有点都去\(x\),\(B\)集合所有点都去\(y\),而这两个集合的 ...

  6. &lbrack;SHOI2005&rsqb;树的双中心

    题目链接:Click here Solution: 首先我们要知道,选择两个点\(A,B\),必定存在一条边,割掉这条边,两个集合分别归\(A,B\)管 再结合题目,我们就得到了一个暴力的\(n^2\ ...

  7. bzoj 3302&amp&semi;2447&amp&semi;2103 树的双中心 树形DP

    题目: 题解: bzoj 3302 == 2447 == 2103 三倍经验 首先我们考虑枚举两个中心的位置,然后统计答案. 我们发现,一定有一部分点离第一个中心更近,另一部分点离第二个中心更近 如果 ...

  8. Luogu 2590 &lbrack;ZJOI2008&rsqb;树的统计 &sol; HYSBZ 1036 &lbrack;ZJOI2008&rsqb;树的统计Count (树链剖分,LCA,线段树)

    Luogu 2590 [ZJOI2008]树的统计 / HYSBZ 1036 [ZJOI2008]树的统计Count (树链剖分,LCA,线段树) Description 一棵树上有n个节点,编号分别 ...

  9. &lbrack;luogu P3384&rsqb; &lbrack;模板&rsqb;树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

随机推荐

  1. sublime text3 --前端工程师必备神器

    sublime text3 --前端工程师必备神器 导读目录: 下载与Emmet插件安装 sublime text3 中cssrem安装与使用 sublime Text 3的中文文件名显示为方框的问题 ...

  2. 发现一款移动web端远程调试工具weinre &comma; 哈哈!

    之前调试一直用的是chrome的远程调试,虽然效果很不错,但是在调试cordova,微信时多有不便. 在git上找工具时发现了这个:weinre,使用方法非常简单 附上git地址: https://g ...

  3. SpringMvc配置 导致实事务失效

    SpringMVC回归MVC本质,简简单单的Restful式函数,没有任何基类之后,应该是传统Request-Response框架中最好用的了. Tips 1.事务失效的* Spring MVC最打 ...

  4. Android Clipboard&lpar;复制&sol;剪贴板&rpar;

    Android提供的剪贴板框架,复制和粘贴不同类型的数据.数据可以是文本,图像,二进制流数据或其它复杂的数据类型. Android提供ClipboardManager.ClipData.Item和Cl ...

  5. 【转】实战Nginx与PHP(FastCGI)的安装、配置与优化

    原文连接:http://ixdba.blog.51cto.com/2895551/806622 原文作者:南非蚂蚁 转载注明以上信息 一.什么是 FastCGIFastCGI是一个可伸缩地.高速地在H ...

  6. Django models数据库配置以及多数据库联用设置

    今天来说说web框架Django怎么配置使用数据库,也就是传说中MVC(Model View Controller)中的M,Model(模型). 简单介绍一下Django中的MVC: 模型(model ...

  7. Bootstrap3 栅格系统-实例:多余的列(column)将另起一行排列

    如果在一个 .row 内包含的列(column)大于12个,包含多余列(column)的元素将作为一个整体单元被另起一行排列. <div class="row"> &l ...

  8. ES6躬行记(20)——类

    ES6正式将类(Class)的概念在语法层面标准化,今后不必再用构造函数模拟类的行为.而ES6引入的类本质上只是个语法糖(即代码更为简洁.语义更为清晰),其大部分功能(例如继承.封装和复用等)均可在E ...

  9. Java中锁的实现与内存语义

    目录 1. 概述 2. 锁的内存语义 3. 锁内存语义的实现 4. 总结 1. 概述 锁在实际使用时只是明白锁限制了并发访问, 但是锁是如何实现并发访问的, 同学们可能不太清楚, 下面这篇文章就来揭开 ...

  10. Java SE之向上转型与向下转型

    package object; //向上转型-向下转型 public class Up_Down_convert { /* 向上转型 * * 1.上转型对象可以使用和操作子类继承或者重写的方法 * 2 ...