I compiled and run in my computer, and it executes correctly. I tried IDEONE, and I got a successful answer.
我编译并在我的计算机上运行,它正确执行。我尝试了IDEONE,我得到了一个成功的答案。
But when I submit it in SPOJ, I'm getting a wrong answer. Is something wrong in this implementation?
但是当我在SPOJ中提交它时,我得到了错误的答案。这个实现有问题吗?
#include <iostream>
#include <cstdio>
using namespace std;
int factorial(int n) {
if (n <= 1)
return 1;
return n * factorial(n - 1);
}
int main() {
int t;
int n;
cout << "";
cin >> t;
for (int i = 0; i < t; i++) {
cout << "";
cin >> n;
printf("%d\n", factorial(n));
}
return 0;
}
1 个解决方案
#1
1
The problem with the above code is due to the finite space we can use to store the value of an int
. On a 32-bit machine, int
's have 32 bits (value 0 or 1), which means that the maximum value an unsigned int
can have is (2^31 - 1) and the maximum value an int
can have is (2^30 - 1) (since it needs one bit to denote whether it is positive or negative, while the unsigned int
is always positive and can devote that bit to just regular value).
上面代码的问题是由于我们可以用来存储int值的有限空间。在32位机器上,int有32位(值0或1),这意味着unsigned int可以有的最大值是(2 ^ 31 - 1),int可以有的最大值是(2 ^ 30) - 1)(因为它需要一位来表示它是正还是负,而unsigned int总是正数并且可以将该位专用于常规值)。
Now, that aside, you should look into ways of storing the value of a very large number in a different data structure! Maybe an array would be a good choice...
现在,除此之外,您应该研究如何将非常大的数值存储在不同的数据结构中!也许阵列会是个不错的选择......
Just to brainstorm, imagine creating an int bigInteger[100]
(that should be large enough to hold 100!). To multiply two of your numbers, you could then implement a bitMultiplication(int bitNum[], int num)
function that would take in your array by reference and perform bitwise multiplication (see the following post for details: Multiplying using Bitwise Operators).
只是为了头脑风暴,想象一下创建一个int bigInteger [100](应该足够大以容纳100!)。要乘以两个数字,您可以实现一个bitMultiplication(int bitNum [],int num)函数,该函数将通过引用接收数组并执行按位乘法(有关详细信息,请参阅以下文章:使用按位运算符进行乘法)。
Use that bitMulitiplication(int bitNum[], int num)
instead of the regular multiplication in your recursive factorial function, and you should have a function that works on large n!
使用bitMulitiplication(int bitNum [],int num)而不是递归factorial函数中的常规乘法,你应该有一个适用于大n的函数!
#1
1
The problem with the above code is due to the finite space we can use to store the value of an int
. On a 32-bit machine, int
's have 32 bits (value 0 or 1), which means that the maximum value an unsigned int
can have is (2^31 - 1) and the maximum value an int
can have is (2^30 - 1) (since it needs one bit to denote whether it is positive or negative, while the unsigned int
is always positive and can devote that bit to just regular value).
上面代码的问题是由于我们可以用来存储int值的有限空间。在32位机器上,int有32位(值0或1),这意味着unsigned int可以有的最大值是(2 ^ 31 - 1),int可以有的最大值是(2 ^ 30) - 1)(因为它需要一位来表示它是正还是负,而unsigned int总是正数并且可以将该位专用于常规值)。
Now, that aside, you should look into ways of storing the value of a very large number in a different data structure! Maybe an array would be a good choice...
现在,除此之外,您应该研究如何将非常大的数值存储在不同的数据结构中!也许阵列会是个不错的选择......
Just to brainstorm, imagine creating an int bigInteger[100]
(that should be large enough to hold 100!). To multiply two of your numbers, you could then implement a bitMultiplication(int bitNum[], int num)
function that would take in your array by reference and perform bitwise multiplication (see the following post for details: Multiplying using Bitwise Operators).
只是为了头脑风暴,想象一下创建一个int bigInteger [100](应该足够大以容纳100!)。要乘以两个数字,您可以实现一个bitMultiplication(int bitNum [],int num)函数,该函数将通过引用接收数组并执行按位乘法(有关详细信息,请参阅以下文章:使用按位运算符进行乘法)。
Use that bitMulitiplication(int bitNum[], int num)
instead of the regular multiplication in your recursive factorial function, and you should have a function that works on large n!
使用bitMulitiplication(int bitNum [],int num)而不是递归factorial函数中的常规乘法,你应该有一个适用于大n的函数!