基于ROS完成寻迹运动

时间:2025-01-15 19:37:14

安装opencv功能包:

$ sudo apt-get install ros-indigo-version-opencv libopencv-dev python-opencv

 检测指示线:

#!/usr/bin/env python
# coding=utf-8 import rospy
from sensor_msgs.msg import Image
import cv2, cv_bridge
import numpy
from geometry_msgs.msg import Twist class Follower:
def __init__(self):
self.bridge = cv_bridge.CvBridge()
cv2.namedWindow("window", 1)
# 订阅usb摄像头
self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.image_callback)
# self.image_sub = rospy.Subscriber("cv_bridge_image", Image, self.image_callback)
# 订阅深度相机
# self.image_sub = rospy.Subscriber("/camera/rgb/image_raw", Image, self.image_callback)
# self.image_sub = rospy.Subscriber("/camera/depth/image_raw", Image, self.image_callback)
    
self.cmd_vel_pub = rospy.Publisher("cmd_vel", Twist, queue_size=1)
self.twist = Twist() def image_callback(self, msg):
image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='bgr8')
# hsv将RGB图像分解成色调H,饱和度S,明度V
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# 颜色的范围 # 第二个参数:lower指的是图像中低于这个lower的值,图像值变为0
# 第三个参数:upper指的是图像中高于这个upper的值,图像值变为0
# 而在lower~upper之间的值变成255
lower_black = numpy.array([0, 0, 0])
upper_black = numpy.array([50, 50, 50])
mask = cv2.inRange(hsv, lower_black, upper_black)
masked = cv2.bitwise_and(image, image, mask=mask) # 在图像某处绘制一个指示,因为只考虑20行宽的图像,所以使用numpy切片将以外的空间区域清空
h, w, d = image.shape
search_top = 3*h/4
search_bot = search_top + 20
mask[0:search_top, 0:w] = 0
mask[search_bot:h, 0:w] = 0
# 计算mask图像的重心,即几何中心
M = cv2.moments(mask)
if M['m00'] > 0:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
cv2.circle(image, (cx, cy), 20, (0, 0, 255), -1)
        
if not cv2.circle:
self.twist.linear.x = -0.5
self.twist.angular.z = 0.1
# 计算图像中心线和目标指示线中心的距离
erro = cx - w/2
self.twist.linear.x = 0.5
# self.twist.angular.z = -float(erro)/100
self.twist.angular.z = 0 self.cmd_vel_pub.publish(self.twist)
cv2.imshow("window", image)
cv2.waitKey(3) rospy.init_node("opencv")
follower = Follower()
rospy.spin()

  使用opencv的cvtColor()函数将RGB图像转换成HSV图像,使用numpy在HSV颜色空间中创建一个所需的色调范围,然后用inRange()函数根据色调范围生成一个二值图像。

  跟踪指示线的策略:只考虑图像1/3高处的20行宽的部分,在检测的图像中心绘制一个圆点用来标记。