https://pdfs.semanticscholar.org/e43a/3c3c032cf3c70875c4193f8f8818531857b2.pdf
1、introduction
在Brazil: the National Indicator of Functional Literacy(INAF) 在2001年之后自动计算人口的文化水平,分为illiterate、rudimentary、basic、advanced
1920-1980年间就一共有200个firmulas来评估英文可读性。
Portuguese 的唯一工具就是 the Flesch Reading Ease index。
本文关注与可读性评估方法来辅助写作工具中的文本简化过程,工具名称是 SIMPLIFICA。这个工具是 part of the PorSimples project。和之前的工作不一样的是,这个工具不根据linear grade levels去对文本难度建模,而是将文本映射到INFA定义的文化水平的三个等级: rudimentary, basic or advanced. 而且,使用了更广泛的特征集合,不同的学习技巧、目标语言是新的、应用是新的。
我们重点关注以下几个研究问题:
1、给定训练材料,检测葡萄牙语文本复杂度是可能的吗(根据INAF等级)
2、对这个问题建模的最好方法是什么,哪些特征是相关的
我们对nominal, ordinal and interval名词、序数词和基于间隔进行试验,探索了Coh-Metrix 2.0 (2004年)提出的认知激励的特征而且适应葡萄牙语,伴随了一系列新特征,包括句法特征来捕捉简化操作和ngram语言模型特征。
2 Text Simplication in Porsimples
text simplification(TS)
我们提出了两类简化类型:natural和strong
建立了简化文本的语料,两类都有
2.1 the rule-based simplification system
简化操作和句法现象的关系在基于规则的句法简化系统当中会体现 (Candido Jr. et al., 2009).
简化操作:sentence splitting, changing particular discourse markers by simpler ones, transforming passive into active voice, inverting the order of clauses, converting to subject-verb-object order, relocating long adverbial phrases
2.2 the SIMPLIFICA tool
基于规则的简化系统是SIMPLICATION的一部分它是自动写作工具用来简化原始文本---网页工具。
3、readability assessment
2008,定义了文本质量的度量方法
2005,2007,作为把英语作为第二语言的学习者、
2009,有学习能力缺陷的人
2007,理解能力有问题的
传统指标Flesch-Kincaid Level score tend来预测文本难度
Miltsakali and Troutt (2007; 2008) ,提出自动工具评估Web文本阅读难度,目标人群是青少年和低文化水平成年人。
使用机器学习,评估德语可读性的自动工具,使用类似 Flesch Reading Ease的可读性分数。
4、a tool for readability assessment
和别的工作不同的是:
i、使用cognitively-motivated metrics的特征集合,提供对文本复杂度的更好的解释的附加特征。
ii、新的受众:不同文化水平
iii、对非线性数据scales的不同的统计模型:INAF定义的文本水平
iv、关注于新的应用:使用可读性评估
v、目标语言是葡萄牙语
4.1 features for assessing readability
3组特征:
第一组包含认知驱动的特征 ,来源于the Coh-Metrix-PORT tool
第二组特征包含反应特殊句法结构的
第三组特征包含来源于ngram语言模型的特征,考虑到了unigram、bigrams和trigrams概率和复杂度。
基本特征包括简单计数,不要求任何语言工具或另外的计算资源。
Coh-Metrix-Port
coh-metrix工具来计算和英文本文理解的相关的计算特征。
该工具中用到了以下特征:
1)每句话的单词
2)同位语的概率
3)从句的概率
4)Flesch index
5)主要动词前的words
6)每篇文章的句子
7)关系从句的概率
8)每个单词的syllables音节
9)Number of positive additive connectives
10)Number of negative causal connectives
使用了三个类型的机器学习算法:标准分类器、计数(排序)分类器和回归分类器。
分类器使用了是Weka工具(SMO)的svm的排序、分类和回归工具。使用SMO算法,rbf核用于回归。
5 实验
语料:。。
特征分析:计算特征和期望文化水平的绝对pearson距离
实验中:将不同类特征、三种分类器都分别对比了,使用了F-measures,Pearson相关系数和MAE
回归模型中,RGB核是最好的。
所有的特征都考虑的效果对所有模型的所有特征集合来说都是最好的,不同特征组合的各自性能各不相同。
当把每个特征独立看待时,句法特征和coh-metrix-port得到了最好的相关系数,但是语言模型最差。
线性分类器是最简单的模型,达到了最高的F-measure,相关系数也是能和其他模型想比拟的。
Readability Assessment for Text Simplification -paper的更多相关文章
-
OneStopEnglish corpus: A new corpus for automatic readability assessment and text simplification-paper
这篇论文的related work非常详尽地介绍了各种readability的语料 abstract这个paper描述了onestopengilish这个三个level的文本语料的收集和整理,阐述了再 ...
-
[转]NLP Tasks
Natural Language Processing Tasks and Selected References I've been working on several natural langu ...
-
READ–IT: Assessing Readability of Italian Texts with a View to Text Simplification-paper
https://aclanthology.info/pdf/W/W11/W11-2308.pdf 2 background2000年以前 ----传统可读性准则局限于表面的文本特征,例如the Fle ...
-
(转)awesome-text-summarization
awesome-text-summarization 2018-07-19 10:45:13 A curated list of resources dedicated to text summari ...
-
自然语言处理领域重要论文&;资源全索引
自然语言处理(NLP)是人工智能研究中极具挑战的一个分支.随着深度学习等技术的引入,NLP领域正在以前所未有的速度向前发展.但对于初学者来说,这一领域目前有哪些研究和资源是必读的?最近,Kyubyon ...
-
NLP项目
GitHub NLP项目:自然语言处理项目的相关干货整理 自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域.本文作者为自然语言处理NLP初学者整理了 ...
-
Official Program for CVPR 2015
From: http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...
-
svg + d3
为了实现元素的添加,删除,拖拽,左键点击,右键单击,悬浮等功能,使用了d3 + svg 的技术来实现界面. 最开始是采用canvas,但是由于功能原因放弃了该技术,可以看下 canvas简介 另附:c ...
-
常用CSS Reset汇总
什么是Css Reset呢? 在 HTML标签在浏览器里有默认的样式,不同浏览器的默认样式之间也会有差别.在切换页面的时候,浏览器的默认样式往往会给我们带来麻烦,影响开发效率.所以解决的方法就是一开始 ...
随机推荐
-
Winform自定义控件基础(一)
1.设置图像和文字以抗锯齿的方式呈现 g.SmoothingMode = SmoothingMode.AntiAlias; g.TextRenderingHint = TextRenderingHin ...
-
jquery给net里面的RadioButtonList添加选项改变事件
<script type="text/JavaScript" src="../../../JS/jQuery-1.4.1.min.js"></ ...
-
cmd 一键获取 所有连接过的wifi 密码
for /f "skip=9 tokens=1,2 delims=:" %i in ('netsh wlan show profiles') do @echo %j | finds ...
-
Log4j使用说明
Log4J实例应用开发 在实际编程时,要使Log4j真正在系统中运行事先还要对配置文件进行定义.定义步骤就是对Logger.Appender及Layout的分别使用.Log4j支持两种配置文件格式,一 ...
-
Java互联网架构-直播互动平台高并发分布式架构应用设计
概述 网页HTML 静态化: 其实大家都知道网页静态化,效率最高,消耗最小的就是纯静态化的 html 页面,所以我们尽可能使我们的网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法, ...
-
<;ROS>; NodeHandle句柄
作者:jack_20 原文:https://blog.csdn.net/jack_20/article/details/70746736 1.句柄可以让你通过构造函数指定命名空间 ros::NodeH ...
-
None.js 第六步 Stream(流)
输出流 var fs = require("fs"); var data = ''; // 创建可读流 var readerStream = fs.createReadStream ...
-
深入理解C++内存管理机制
关于C++的内存处理,可分为三大块,分别是: (一)内存管理机制 (二)内存泄露处理 (三)内存回收机制 这篇文章将就(一)内存管理机制 进行深入探讨,如有错误欢迎大家指正. C++的内存管理也可细分 ...
-
cocos2d-x 编译 安卓(android)apk文件
摘要: 一.下载Android环境 搭建Android环境需要用到Android SDK.NDK.Ant和JDK: 下载Android SDK 下载Android NDk 下载Android JD ...
-
如何在 QWidget 窗口上弹出右键菜单
Title : QWidget 窗口上弹出右键菜单的两个方法 Solution 1 : 给一个 QWidget 添加 QActions,设置 QWidget 的 contextMenuPolicy 属 ...