神经网络之dropout层

时间:2021-11-30 00:20:55

一:引言

  因为在机器学习的一些模型中,如果模型的参数太多,而训练样本又太少的话,这样训练出来的模型很容易产生过拟合现象。在训练bp网络时经常遇到的一个问题,过拟合指的是模型在训练数据上损失函数比较小,预测准确率较高(如果通过画图来表示的话,就是拟合曲线比较尖,不平滑,泛化能力不好),但是在测试数据上损失函数比较大,预测准确率较低。

  常用的防治过拟合的方法是在模型的损失函数中,需要对模型的参数进行“惩罚”,这样的话这些参数就不会太大,而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。因此在添加权值惩罚项后,应用梯度下降算法迭代优化计算时,如果参数theta比较大,则此时的正则项数值也比较大,那么在下一次更新参数时,参数削减的也比较大。可以使拟合结果看起来更平滑,不至于过拟合。

  Dropout是hintion最近2年提出的;为了防止模型过拟合,Dropout可以作为一种trikc供选择。在hinton的论文摘要中指出,在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。

二 Dropout方法

训练阶段:

  1.Dropout是在标准的bp网络的的结构上,使bp网的隐层激活值,以一定的比例v变为0,即按照一定比例v,随机地让一部分隐层节点失效;在后面benchmark实验测试时,部分实验让隐层节点失效的基础上,使输入数据也以一定比例(试验用20%)是部分输入数据失效(这个有点像denoising autoencoder),这样得到了更好的结果。

  2.去掉权值惩罚项,取而代之的事,限制权值的范围,给每个权值设置一个上限范围;如果在训练跟新的过程中,权值超过了这个上限,则把权值设置为这个上限的值(这个上限值得设定作者并没有说设置多少最好,后面的试验中作者说这个上限设置为15时,最好;为啥?估计是交叉验证得出的实验结论)。

  这样处理,不论权值更新量有多大,权值都不会过大。此外,还可以使算法使用一个比较大的学习率,来加快学习速度,从而使算法在一个更广阔的权值空间中搜索更好的权值,而不用担心权值过大。

测试阶段:

  在网络前向传播到输出层前时隐含层节点的输出值都要缩减到(1-v)倍;例如正常的隐层输出为a,此时需要缩减为a(1-v)。

  这里我的解释是:假设比例v=0.5,即在训练阶段,以0.5的比例忽略隐层节点;那么假设隐层有80个节点,每个节点输出值为1,那么此时只有40个节点正常工作;也就是说总的输出为40个1和40个0;输出总和为40;而在测试阶段,由于我们的权值已经训练完成,此时就不在按照0.5的比例忽略隐层输出,假设此时每个隐层的输出还是1,那么此时总的输出为80个1,明显比dropout训练时输出大一倍(由于dropout比例为0.5);所以为了得到和训练时一样的输出结果,就缩减隐层输出为a(1-v);即此时输出80个0.5,总和也为40.这样就使得测试阶段和训练阶段的输出“一致”了。(个人见解)

三 Dropout原理分析

  Dropout可以看做是一种模型平均,所谓模型平均,顾名思义,就是把来自不同模型的估计或者预测通过一定的权重平均起来,在一些文献中也称为模型组合,它一般包括组合估计和组合预测。

  Dropout中哪里体现了“不同模型”;这个奥秘就是我们随机选择忽略隐层节点,在每个批次的训练过程中,由于每次随机忽略的隐层节点都不同,这样就使每次训练的网络都是不一样的,每次训练都可以单做一个“新”的模型;此外,隐含节点都是以一定概率随机出现,因此不能保证每2个隐含节点每次都同时出现,这样权值的更新不再依赖于有固定关系隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况。

  这样dropout过程就是一个非常有效的神经网络模型平均方法,通过训练大量的不同的网络,来平均预测概率。不同的模型在不同的训练集上训练(每个批次的训练数据都是随机选择),最后在每个模型用相同的权重来“融合”,介个有点类似boosting算法。

http://m.blog.csdn.net/article/details?id=50890473

神经网络之dropout层的更多相关文章

  1. 【python实现卷积神经网络】Dropout层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  2. caffe中关于(ReLU层,Dropout层,BatchNorm层,Scale层)输入输出层一致的问题

    在卷积神经网络中.常见到的激活函数有Relu层 layer { name: "relu1" type: "ReLU" bottom: "pool1&q ...

  3. 【python实现卷积神经网络】激活层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. keras 添加L2正则 和 dropout层

    在某一层添加L2正则: from keras import regularizer model.add(layers.Dense(..., kernel_regularizer = regulariz ...

  5. 【python实现卷积神经网络】卷积层Conv2D反向传播过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  6. 【python实现卷积神经网络】padding2D层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  7. 【python实现卷积神经网络】Flatten层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  8. paper 158:CNN(卷积神经网络):Dropout Layer

    Dropout作用 在hinton的论文Improving neural networks by preventing coadaptation提出的,主要作用就是为了防止模型过拟合.当模型参数较多, ...

  9. TensorFlow keras dropout层

    # 建立神经网络模型 model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), # 将输入数据的形状进行修改成神经网 ...

随机推荐

  1. HDU 2588 GCD (欧拉函数)

    GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status De ...

  2. 【转】SVN建库方法

    转载地址:http://blog.csdn.net/winonatong/article/details/5791919 SVN全名Subversion,即版本控制系统.SVN与CVS一样,是一个跨平 ...

  3. 做好SEO需要掌握的20个基础知识

    作为一个网站优化者,有一些基础seo知识点是大家必须要掌握的,网站排名的好快,和这些基础的SEO优化知识有没做好,有没做到位,有着直接的关系!今天,伟伟SEO就把我前面讲的SEO优化基础知识做个总结, ...

  4. 服务端发送xml请求java代码示例

    /** * */ package com.autoyol.pay.cmb.core; import java.io.ByteArrayOutputStream; import java.io.IOEx ...

  5. ASP.NET Session丢失的解决方案

    正常操作情况下会有ASP.NET Session丢失的情况出现.因为程序是在不停的被操作,排除Session超时的可能.另外,Session超时时间被设定成60分钟,不会这么快就超时的.现在我就把原因 ...

  6. centos 安装node js环境

    node.js支持多种平台安装,其中Win平台安装比较简单,下面重点讲解下Linux平台的安装步骤.本文以CentOS平台为实例,不准备讲 解采取源码编译安装方式,而是采取在node.js网站下载已经 ...

  7. 用Python写的简单脚本更新本地hosts

    这两天Google墙得严重,于是就产生了做个一键更新hosts的脚本的想法. 由于正在学习Python,理所当然用Python来写这个脚本了. 接触比较多的就是urllib2这个库,习惯性的impor ...

  8. php数组操作小结

    $x unset($x[3])      //key不重排

  9. python正则表达式例子说明

    pattern = re.compile('<div.*?author">.*?<a.*?<img.*?>(.*?)</a>.*?<div.* ...

  10. 引用reference作用域scope闭包closure上下文context用法

    引用(reference).作用域(scope).闭包(closure)以及上下文(context)是JavaScript重中之重的基础,也是学习好JavaScript的基础.在这里我以浅显的理解给大 ...