算法
假定数据有M个特征,则这些数据相当于在M维空间内的点
x_{11} & x_{12} & ... & x_{1M} \\
x_{21} & x_{22} & ... & x_{2M} \\
. & . & & .\\
. & . & & .\\
. & . & & .\\
x_{N1} & x_{N2} & ... & x_{NM}
\end{pmatrix}\]
同时我们有标注集向量
y_1 \\
y_2 \\
. \\
. \\
. \\
y_M
\end{pmatrix}\]
那么对于一个新的数据点
x_{z1} & x_{z2} & ... & x_{zM}
\end{pmatrix}\]
我们通过计算其与其他所有点的欧氏距离
\]
得到与所有点的距离向量(并按从小到大排序)
D_1 \\
D_2 \\
. \\
. \\
. \\
D_M
\end{pmatrix}\]
取前k个点即为最近邻的k个点。
D_1 \\
D_2 \\
. \\
. \\
. \\
D_k
\end{pmatrix}\]
根据这k个点所对应的标注,统计这些标注出现的次数\(n_k\)
y_1 & n_1 \\
y_2 & n_2 \\
. & .\\
. & .\\
. & .\\
y_k & n_k
\end{pmatrix}\]
取数量最大的标注作为\(\vec{x_z}\)的标注。
\]
算法实现(Python)
from numpy import *
def KNNclassify(inX, dataset, labels, k):
"""
K-Nearest Neighbour algorithm
:param inX: Input vector X
:param dataset: Training Dataset
:param labels: Labels vector
:param k: the number of nearest neighbours
:return: The class of input
"""
dataset_size = dataset.shape[0]
diffMat = tile(inX, (dataset_size, 1)) - dataset # Use inX to fill a matrix of dataset_size
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1) # Sum according to rows of matrix
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort() # Get the index of all distances
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
算法优点
- 算法实现简单;
- 不需要事先训练,可直接应用于数据。
算法缺点
- 数据条目很多时算法消耗时间很长,因为它要计算新数据点到每个已存在的数据点的距离;
- 可能会出现多个相同的最大值,导致新的数据点无法准确判断真实的类别标注;
- 如果直接使用KNN算法,则数据范围大的特征对结果影响很大。为了消除这种影响,应该对数据进行归一化的预处理。
机器学习学习笔记之一:K最近邻算法(KNN)的更多相关文章
-
机器学习【一】K最近邻算法
K最近邻算法 KNN 基本原理 离哪个类近,就属于该类 [例如:与下方新元素距离最近的三个点中,2个深色,所以新元素分类为深色] K的含义就是最近邻的个数.在sklearn中,KNN的K值是通过n ...
-
转载: scikit-learn学习之K最近邻算法(KNN)
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ================== ...
-
《机器学习实战》学习笔记一K邻近算法
一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...
-
k最近邻算法(kNN)
from numpy import * import operator from os import listdir def classify0(inX, dataSet, labels, k): d ...
-
机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)
机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...
-
PCB 加投率计算实现基本原理--K最近邻算法(KNN)
PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那 ...
-
【算法】K最近邻算法(K-NEAREST NEIGHBOURS,KNN)
K最近邻算法(k-nearest neighbours,KNN) 算法 对一个元素进行分类 查看它k个最近的邻居 在这些邻居中,哪个种类多,这个元素有更大概率是这个种类 使用 使用KNN来做两项基本工 ...
-
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米 ...
-
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析
机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...
-
[笔记]《算法图解》第十章 K最近邻算法
K最近邻算法 简称KNN,计算与周边邻居的距离的算法,用于创建分类系统.机器学习等. 算法思路:首先特征化(量化) 然后在象限中选取目标点,然后通过目标点与其n个邻居的比较,得出目标的特征. 余弦相似 ...
随机推荐
-
DRUPAL 慢的原因
不止一次听人抱怨DRUPAL 慢,在本地开发环境尤为常见,较为常见的原因有:- 本地环境造成慢的原因,最常见的是由update manager 造成的,如果你发现你开的DRUPAL 页面 一直在等待 ...
-
CGAffineTransformMake(a,b,c,d,tx,ty) 矩阵运算的原理
简记: CGAffineTransformMake(a,b,c,d,tx,ty) ad缩放bc旋转tx,ty位移,基础的2D矩阵 公式 x=ax+cy+tx y=bx+dy+ty 1.矩阵的基本 ...
-
单片机C 语言与汇编语言混合编程
在单片机应用系统设计中,过去主要采用汇编语言开发程序. 汇编语言编写的程序对单片机硬件操作很方便,编写的程序代码短,效率高,但系统设计的周期长,可读性和可移植性都很差.C语言程序开发是近年来单片机系统 ...
-
自己配置的WAMP环境,扩展oracle函数库(oci)
同事昨天接到一个任务,要用php处理oracle数据库的内容,但是php打开oracle扩展不是像mysql那样直接用就行,需要下一点东西才能打开 第一步 需要到oracle官方下载一个install ...
-
uva11600 状压期望dp
一般的期望dp是, dp[i] = dp[j] * p[j] + 1; 即走到下一步需要1的时间,然后加上 下一步走到目标的期望*这一步走到下一步的概率 这一题,我们将联通分块缩为一个点,因为联通块都 ...
-
跟随上次的socket sever,追加Tcplistener、Httplistener的server
一.Tcplistener搭建web server 1.同socket类似,Tcplistener其实是对socket的封装,方便编程,先初始化tcplistener并且开始监听 //初始化端点信息 ...
-
x的x次幂的值为10,求x的近似值
public class Main { static double eps = 1e-7; public static void main(String[] args){ double l = 2,r ...
-
.NET垃圾回收机制(一)
垃圾收集器(GarbageCollection)是组成.Net平台一个很重要的部分,.NET垃圾回收机制降低了编程复杂度,使程序员不必分散精力去处理析构.不妨碍设计师进行系统抽象.减少了由于内存运用不 ...
-
Android网络开发之基本介绍
Android平台浏览器采用WebKit引擎,名为ChormeLite,拥有强大扩展特性,每个开发者都可以编写自己的插件. 目前,Android平台有3种网络接口可以使用,分别是:java.net, ...
-
ubuntu 初始设置备忘
配置静态网络 vim /etc/network/interfaces auto eth0 #iface eth0 inet dhcp iface eth0 inet static address x. ...