LeetCode Beautiful Arrangement

时间:2021-01-28 23:42:35

原题链接在这里:https://leetcode.com/problems/beautiful-arrangement/description/

题目:

Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:

  1. The number at the ith position is divisible by i.
  2. i is divisible by the number at the ith position.

Now given N, how many beautiful arrangements can you construct?

Example 1:

Input: 2
Output: 2
Explanation:

The first beautiful arrangement is [1, 2]:

Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).

Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).

The second beautiful arrangement is [2, 1]:

Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).

Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.

Note:

  1. N is a positive integer and will not exceed 15.

题解:

典型的backtracking. 用visited记录用过的位置, 挨个position往后permute. 遇到不合规矩的直接返回, 看能不能走到N.

Time Complexity: exponential. 每次走到最后才遇到不和规矩的backtrack回来.

Space: O(N).

AC Java:

 class Solution {
int res = 0;
public int countArrangement(int N) {
if(N <= 0){
return 0;
} boolean [] visited = new boolean[N+1];
dfs(visited, 1, N);
return res;
} private void dfs(boolean [] visited, int pos, int N){
if(pos > N){
res++;
return;
} for(int i = 1; i<=N; i++){
if(!visited[i] && (i%pos==0 || pos%i==0)){
visited[i] = true;
dfs(visited, pos+1, N);
visited[i] = false;
}
}
}
}

跟上Beautiful Arrangement II.

LeetCode Beautiful Arrangement的更多相关文章

  1. &lbrack;LeetCode&rsqb; Beautiful Arrangement II 优美排列之二

    Given two integers n and k, you need to construct a list which contains n different positive integer ...

  2. &lbrack;LeetCode&rsqb; Beautiful Arrangement 优美排列

    Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is const ...

  3. LeetCode Beautiful Arrangement II

    原题链接在这里:https://leetcode.com/problems/beautiful-arrangement-ii/description/ 题目: Given two integers n ...

  4. 【LeetCode】526&period; Beautiful Arrangement 解题报告(Python & C&plus;&plus;)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  5. &lbrack;Swift&rsqb;LeetCode526&period; 优美的排列 &vert; Beautiful Arrangement

    Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is const ...

  6. 526&period; Beautiful Arrangement

    Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is const ...

  7. LC 526&period; Beautiful Arrangement

    uppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constr ...

  8. LC 667&period; Beautiful Arrangement II

    Given two integers n and k, you need to construct a list which contains n different positive integer ...

  9. 【LeetCode】667&period; Beautiful Arrangement II 解题报告(Python & C&plus;&plus;)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

随机推荐

  1. 认识Runtime2

    我定义了一个Person类作为测试. 其中Person.h: // // Person.h // Test // // Created by zhanggui on 15/8/16. // Copyr ...

  2. MySQL 部分函数使用

    1.DATE_ADD 参考博客:MySQL日期时间函数大全 转 例:DATE_ADD(date,INTERVAL expr type) 2.日期转字符串 DATE_FORMAT 参考博客:MYSQL中 ...

  3. jquery之event与originalEvent的关系、event事件对象用法浅析

    在jquery中,最终传入事件处理程序的 event 其实已经被 jQuery 做过标准化处理, 其原有的事件对象则被保存于 event 对象的 originalEvent 属性之中, 每个 even ...

  4. JavaScript实现样式表的简单切换

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  5. 实现透明渐变的Activity

    如果光是透明全屏的Activity的话,直接继承内置theme即可 <activity android:theme="@android:style/Theme.NoTitleBar.F ...

  6. OC类的介绍

    类的本质 类的本质其实也是一个对象(类对象) 类对象 类对象再程序运行时一直存在 类对象是一种数据结构,存储类的基本信息:类大小,类名称,类的版本以及消息与函数的映射表等 类对象所保存的信息在程序编译 ...

  7. u盘安装ubuntu10&period;04 、11&period;04 server

    10.04 先将 ubuntu server 的 iso 放到优盘上,然后在提示无法找到光驱时,按 alt+f2 打开一个新的 console 窗口,将 iso mount 上,具体操作如下: ls ...

  8. Linux内核分析作业 NO&period;6

    进程的描述和进程的创建 于佳心  原创作品转载请注明出处  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-100002900 ...

  9. 【POJ 2823】Sliding Window(单调队列&sol;堆)

    BUPT2017 wintertraining(16) #5 D POJ - 2823 题意 给定n,k,求滑窗[i,i+k-1]在(1<=i<=n)的最大值最小值. 题解 单调队列或堆. ...

  10. flex布局简介

    一.概述 浮动在移动布局中不再重要,flex盒模型越来越重要. flexbox经历过三个版本,主要区别是2009年到2012年之间的语法变化. 最新的语法和现在规范是同步的(例display:flex ...