【CF613D】Kingdom and its Cities
题面
题解
看到关键点当然是建虚树啦。
设\(f[x]\)表示以\(x\)为根的子树的答案,\(g[x]\)表示以\(x\)为根的子树内是否有和\(x\)联通的点,\(c=\sum_{v\in son_x} g[v]\)。
分类讨论一下:
- 如果一个点在原树下它和它的父亲均为关键点,那么显然不行。
- 这个点是关键点,\(f[x]+=c\),\(g[x]=1\)
- 这个点不是关键点,若\(c>1\)则断掉这个点,\(++f[x],g[x]=0\),否则\(g[x]=1\)
这题就做\(v.a.n\)啦。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e5 + 5;
struct Graph { int to, next; } e[MAX_N << 1];
int fir1[MAX_N], fir2[MAX_N], e_cnt;
void clearGraph() {
memset(fir1, -1, sizeof(fir1));
memset(fir2, -1, sizeof(fir2));
}
void Add_Edge(int *fir, int u, int v) {
e[e_cnt] = (Graph){v, fir[u]};
fir[u] = e_cnt++;
}
namespace Tree {
int fa[MAX_N], dep[MAX_N], size[MAX_N], top[MAX_N], son[MAX_N], dfn[MAX_N], tim;
void dfs1(int x) {
dfn[x] = ++tim;
size[x] = 1, dep[x] = dep[fa[x]] + 1;
for (int i = fir1[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa[x]) continue;
fa[v] = x; dfs1(v); size[x] += size[v];
if (size[v] > size[son[x]]) son[x] = v;
}
}
void dfs2(int x, int tp) {
top[x] = tp;
if (son[x]) dfs2(son[x], tp);
for (int i = fir1[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa[x] || v == son[x]) continue;
dfs2(v, v);
}
}
int LCA(int x, int y) {
while (top[x] != top[y]) {
if (dep[top[x]] < dep[top[y]]) swap(x, y);
x = fa[top[x]];
}
return dep[x] < dep[y] ? x : y;
}
}
using Tree::dfn; using Tree::LCA;
int N, M, K, a[MAX_N], f[MAX_N];
bool g[MAX_N], key[MAX_N];
bool cmp(const int &i, const int &j) { return dfn[i] < dfn[j]; }
void build() {
static int stk[MAX_N], top;
e_cnt = 0; top = 0;
sort(&a[1], &a[K + 1], cmp);
for (int i = 1; i <= K; i++) if (a[i] != a[i - 1]) stk[++top] = a[i];
K = top;
for (int i = 1; i <= K; i++) a[i] = stk[i];
stk[top = 1] = 1, fir2[1] = -1;
for (int i = 1; i <= K; i++) {
if (a[i] == 1) continue;
int lca = LCA(a[i], stk[top]);
if (lca != stk[top]) {
while (dfn[lca] < dfn[stk[top - 1]]) {
int u = stk[top], v = stk[top - 1];
Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
--top;
}
if (dfn[lca] > dfn[stk[top - 1]]) {
fir2[lca] = -1; int u = lca, v = stk[top];
Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
stk[top] = lca;
} else {
int u = lca, v = stk[top--];
Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
}
}
fir2[a[i]] = -1, stk[++top] = a[i];
}
for (int i = 1; i < top; i++) {
int u = stk[i], v = stk[i + 1];
Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
}
}
void Dp(int x, int fa) {
f[x] = g[x] = 0;
int c = 0;
for (int i = fir2[x]; ~i; i = e[i].next) {
int v = e[i].to; if (v == fa) continue;
Dp(v, x);
f[x] += f[v], c += g[v];
}
if (key[x]) g[x] = 1, f[x] += c;
else if (c > 1) g[x] = 0, ++f[x];
else g[x] = c;
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
clearGraph();
N = gi();
for (int i = 1; i < N; i++) {
int u = gi(), v = gi();
Add_Edge(fir1, u, v), Add_Edge(fir1, v, u);
}
Tree::dfs1(1), Tree::dfs2(1, 1);
M = gi();
while (M--) {
K = gi(); for (int i = 1; i <= K; i++) key[a[i] = gi()] = 1;
bool flg = 1;
for (int i = 1; i <= K && flg; i++) if (key[Tree::fa[a[i]]]) flg = 0;
if (!flg) { puts("-1"); goto NXT; }
build();
Dp(1, 0);
printf("%d\n", f[1]);
NXT :
for (int i = 1; i <= K; i++) key[a[i]] = 0;
}
return 0;
}