CF613D Kingdom and its Cities 虚树 树形dp 贪心

时间:2022-03-31 23:42:26

LINK:Kingdom and its Cities

发现是一个树上关键点问题 所以考虑虚树刚好也有标志\(\sum k\leq 100000\)即关键点总数的限制。

首先当k==1时 答案显然为0。

然后考虑无解情况 容易发现这种情况是两个点同时为关键点 那么我们只需要判断是否存在两个点相连的情况就好了。

这个可以在建立虚树时候判断 我多此一举了 直接标记父亲然后判断父亲是否存在。

接下来考虑如何统计答案。

可以从下往上观察 在某个点处统计儿子们的贡献。

假设儿子都是关键点 考虑当前点是否是关键点 如果是 显然都得断开一遍。且向上传递的时候这个点是关键点。

如果当前不是 那么如果有>1个儿子 那么在当前断开显然是比较优的且向上传递的时候这个点不是关键点、

如果只有一个儿子 可以在当前断开 不过更优的是可以去上面断开这个结果不会更差。

其实就这三种情况(类似dp 可以发现第一个决策时固定的 第二个决策是最优的 第三个决策根据不会更差的那套理论 可以发现也是最优的。

注意特判 有效儿子为0的情况.

code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define S second
#define F first
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=100010;
int n,Q,len,cnt,ans,top;
int f[MAXN][20],Log[MAXN],dfn[MAXN],d[MAXN];
int lin[MAXN],ver[MAXN<<1],nex[MAXN<<1];
int a[MAXN],vis[MAXN],s[MAXN],v[MAXN];
vector<int>g[MAXN];
inline int cmp(int x,int y){return dfn[x]<dfn[y];}
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline void dfs(int x,int fa)
{
dfn[x]=++cnt;d[x]=d[fa]+1;f[x][0]=fa;
rep(1,Log[d[x]],i)f[x][i]=f[f[x][i-1]][i-1];
for(int i=lin[x];i;i=nex[i])
{
int tn=ver[i];
if(tn==fa)continue;
dfs(tn,x);
}
}
inline int LCA(int x,int y)
{
if(d[x]>d[y])swap(x,y);
fep(Log[d[y]],0,i)if(d[f[y][i]]>=d[x])y=f[y][i];
if(x==y)return x;
fep(Log[d[x]],0,i)if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i];
return f[x][0];
}
inline void insert(int x)
{
if(top==1)return s[++top]=x,void();
int lca=LCA(s[top],x);
if(s[top]==lca)return s[++top]=x,void();
while(top>1&&dfn[s[top-1]]>=dfn[lca])
{
g[s[top-1]].pb(s[top]);
--top;
}
if(s[top]!=lca)
{
g[lca].pb(s[top]);
s[top]=lca;
}
s[++top]=x;
}
inline void dp(int x)
{
int mark=0;
vep(0,g[x].size(),i)
{
int tn=g[x][i];
dp(tn);
if(!v[tn])continue;
if(v[x])++ans;
else ++mark;
v[tn]=0;
}
if(!v[x])
{
if(mark==1)v[x]=1;
else ++ans;
}
g[x].clear();
}
int main()
{
//freopen("1.in","r",stdin);
get(n);
rep(2,n,i)
{
int get(x),get(y);
add(x,y);add(y,x);
Log[i]=Log[i>>1]+1;
}
dfs(1,0);get(Q);
rep(1,Q,T)
{
int get(k),flag=0;
rep(1,k,i)get(a[i]),vis[f[a[i]][0]]=1;
rep(1,k,i)if(vis[a[i]])flag=1;
rep(1,k,i)vis[f[a[i]][0]]=0;
if(k==1){puts("0");continue;}
if(flag){puts("-1");continue;}
sort(a+1,a+1+k,cmp);v[a[1]]=1;
s[top=1]=1;if(a[1]!=1)insert(a[1]);
rep(2,k,i)insert(a[i]),v[a[i]]=1;
while(top>1)g[s[top-1]].pb(s[top]),--top;
ans=0;dp(1);put(ans);v[1]=0;
}
return 0;
}
</details>

CF613D Kingdom and its Cities 虚树 树形dp 贪心的更多相关文章

  1. CF613D Kingdom and its Cities 虚树 &plus; 树形DP

    Code: #include<bits/stdc++.h> #define ll long long #define maxn 300003 #define RG register usi ...

  2. 【CF613D】Kingdom and its Cities 虚树&plus;树形DP

    [CF613D]Kingdom and its Cities 题意:给你一棵树,每次询问给出k个关键点,问做多干掉多少个非关键点才能使得所有关键点两两不连通. $n,\sum k\le 10^5$ 题 ...

  3. CF613D Kingdom and its Cities 虚树

    传送门 $\sum k \leq 100000$虚树套路题 设$f_{i,0/1}$表示处理完$i$以及其所在子树的问题,且处理完后$i$所在子树内是否存在$1$个关键点满足它到$i$的路径上不存在任 ...

  4. 【BZOJ-3572】世界树 虚树 &plus; 树形DP

    3572: [Hnoi2014]世界树 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1084  Solved: 611[Submit][Status ...

  5. 【BZOJ-2286】消耗战 虚树 &plus; 树形DP

    2286: [Sdoi2011消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2120  Solved: 752[Submit][Status] ...

  6. bzoj 2286&lpar;虚树&plus;树形dp) 虚树模板

    树链求并又不会写,学了一发虚树,再也不虚啦~ 2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 5002  Sol ...

  7. BZOJ&lowbar;2286&lowbar;&lbrack;Sdoi2011&rsqb;消耗战&lowbar;虚树&plus;树形DP&plus;树剖lca

    BZOJ_2286_[Sdoi2011]消耗战_虚树+树形DP Description 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的 ...

  8. BZOJ5341&lbrack;Ctsc2018&rsqb;暴力写挂——边分治&plus;虚树&plus;树形DP

    题目链接: CSTC2018暴力写挂 题目大意:给出n个点结构不同的两棵树,边有边权(有负权边及0边),要求找到一个点对(a,b)满足dep(a)+dep(b)-dep(lca)-dep'(lca)最 ...

  9. &lbrack;WC2018&rsqb;通道——边分治&plus;虚树&plus;树形DP

    题目链接: [WC2018]通道 题目大意:给出三棵n个节点结构不同的树,边有边权,要求找出一个点对(a,b)使三棵树上这两点的路径权值和最大,一条路径权值为路径上所有边的边权和. 我们按照部分分逐个 ...

随机推荐

  1. linux内核宏container&lowbar;of

    首先来个简单版本 /* given a pointer @ptr to the field @member embedded into type (usually * struct) @type, r ...

  2. windows 7 下安装 IIS 和 ArcGis Server 9&period;3 遇到的问题及解决方法

    windows 7 下安装 IIS 和 ArcGis Server 9.3 遇到的问题及解决方法 分类: ArcGIS server 计算机2012-07-31 14:17 631人阅读 评论(0)  ...

  3. 关于nvarchar与varchar的区别

    varchar(x),  nvarchar(x)这里面的x指的是最大的列宽  如果存储的字符串没达到最大列宽  那么他也只获得对应的列宽的存储空间  并不意味着系统就会给它分配x的空间给它 varch ...

  4. &lbrack;Usaco2007 Jan&rsqb;Telephone Lines架设电话线&lbrack;二分答案&plus;最短路思想&rsqb;

    Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...

  5. Django中ORM操作

    ORM操作: class UserInfo(models.Model): username = models.CharField(max_length=32) password = models.Ch ...

  6. Centos 6 安装 Mysql 5&period;6

    参考:http://www.runoob.com/mysql/mysql-database-import.html 数据库 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库, 每个 ...

  7. 基于虹软人证核验 2&period;0 Android SDK开发集成入门

    一.功能介绍虹软人证核验 2.0 SDK(以下简称SDK)包含人脸检测.人脸跟踪.人证核验等能力,主要实现人证的1:1比对.其中暴露对外的功能方法有:active 引擎激活init 引擎初始化inpu ...

  8. Buildroot Savedefconfig

    /********************************************************************************* * Buildroot Saved ...

  9. 振动器(Vibrator)

    package com.wwj.serviceandboardcast;   import android.app.Activity; import android.app.Service; impo ...

  10. 基于std&colon;&colon;mutex std&colon;&colon;lock&lowbar;guard std&colon;&colon;condition&lowbar;variable 和std&colon;&colon;async实现的简单同步队列

    C++多线程编程中通常会对共享的数据进行写保护,以防止多线程在对共享数据成员进行读写时造成资源争抢导致程序出现未定义的行为.通常的做法是在修改共享数据成员的时候进行加锁--mutex.在使用锁的时候通 ...