Linux驱动之按键驱动编写(中断方式)

时间:2021-03-09 23:36:33

Linux驱动之按键驱动编写(查询方式)已经写了一个查询方式的按键驱动,但是查询方式太占用CPU,接下来利用中断方式编写一个驱动程序,使得CPU占有率降低,在按键空闲时调用read系统调用的进程可以休眠,还是以以下步骤编写:

1、查看原理图,确定需要控制的IO端口

2、查看芯片手册,确定IO端口的寄存器地址

3、编写驱动代码

4、确定应用程序功能,编写测试代码。

5、编写Makefile,编译驱动代码与测试代码,在开发板上运行

 

1、查看原理图,确定需要控制的IO端口

打开原理图,确定需要控制的IO端口为GPF0、GPF2、GPG3、GPG11。可以看到它的中断号为IRQ_EINT0、IRQ_EINT2、IRQ_EINT11、IRQ_EINT19

Linux驱动之按键驱动编写(中断方式)

 

2、查看芯片手册,确定IO端口的寄存器地址,可以看到因为用了两组GPIO端口,所以它的基地址分别为0x56000050、0x56000060。中断方式的寄存器基地址为0x56000088、0x5600008c、0x56000090

Linux驱动之按键驱动编写(中断方式)

Linux驱动之按键驱动编写(中断方式)

Linux驱动之按键驱动编写(中断方式)

 

3、编写驱动代码,编写驱动代码的步骤如下:

 1)、编写出口、入口函数。代码如下,具体说明参考Linux驱动之LED驱动编写

static int second_drv_init(void)
{
    Secondmajor = register_chrdev(0, "buttons", &second_drv_ops);//注册驱动程序

    if(Secondmajor < 0)
        printk("failes 1 buttons_drv register\n");
    
    second_drv_class = class_create(THIS_MODULE, "buttons");//创建类
    if(second_drv_class < 0)
        printk("failes 2 buttons_drv register\n");
    second_drv_class_dev = class_device_create(second_drv_class, NULL, MKDEV(Secondmajor,0), NULL,"buttons");//创建设备节点
    if(second_drv_class_dev < 0)
        printk("failes 3 buttons_drv register\n");

    
    gpfcon = ioremap(0x56000050, 16);//重映射
    gpfdat = gpfcon + 1;
    gpgcon = ioremap(0x56000060, 16);//重映射
    gpgdat = gpgcon + 1;

    printk("register buttons_drv\n");
    return 0;
}

static void second_drv_exit(void)
{
    unregister_chrdev(Secondmajor,"buttons");

    class_device_unregister(second_drv_class_dev);
    class_destroy(second_drv_class);

    iounmap(gpfcon);
    iounmap(gpgcon);

    printk("unregister buttons_drv\n");
}


module_init(second_drv_init);
module_exit(second_drv_exit);

2)、 添加file_operations 结构体,这个是字符设备驱动的核心结构,所有的应用层调用的函数最终都会调用这个结构下面定义的函数

static struct file_operations third_drv_ops = 
{
    .owner   = THIS_MODULE,
    .open    =  third_drv_open,
    .read     = third_drv_read,
    .release = third_drv_close,//增加关闭函数
};

3)、分别编写file_operations 结构体下的open、read、release 函数。其中open函数主要将相应的IO端口配置成中断功能,并且向内核注册中断;read函数主要是在按键引脚电平未改变时休眠,然后按键引脚电平改变后,将按键值传给应用程序处理。(按键值的处理在中断处理程序中);relase函数的功能主要是从内核释放掉open函数注册的中断。程序如下:

static int third_drv_open (struct inode * inode, struct file * file)
{
    int ret;
    ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);//注册一个外部中断S1,双边沿触发,dev_id为&pins_desc[0]
    if(ret)
    {
        printk("open failed 1\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);//注册一个外部中断S2,双边沿触发,dev_id为&pins_desc[1]
    if(ret)
    {
        printk("open failed 2\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);//注册一个外部中断S3,双边沿触发,dev_id为&pins_desc[2]
    if(ret)
    {
        printk("open failed 3\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);//注册一个外部中断S4,双边沿触发,dev_id为&pins_desc[3]
    if(ret)
    {
        printk("open failed 4\n");
        return -1;
    }
    
    return 0;
}


static int third_drv_close(struct inode * inode, struct file * file)
{
    free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);//释放中断,根据IRQ_EINT0找到irq_desc结构。根据pins_desc[0]找到irq_desc->action结构

     free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);//释放中断,根据IRQ_EINT2找到irq_desc结构。根据pins_desc[2]找到irq_desc->action结构

    free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);//释放中断,根据IRQ_EINT11找到irq_desc结构。根据pins_desc[3]找到irq_desc->action结构

    free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);//释放中断,根据IRQ_EINT19找到irq_desc结构。根据pins_desc[4]找到irq_desc->action结构

    return 0;
}

static ssize_t third_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off)
{
    int ret;

    if(count != 1)
    {
        printk("read error\n");
        return -1;
    }

    wait_event_interruptible(button_waitq, ev_press);//将当前进程放入等待队列button_waitq中,并且释放CPU进入睡眠状态
    
    ret = copy_to_user(userbuf, &key_val, 1);//将取得的按键值传给上层应用
    ev_press = 0;//按键已经处理可以继续睡眠
    
    if(ret)
    {
        printk("copy error\n");
        return -1;
    }
    
    return 1;
}

4)、中断处理函数的编写,中断处理函数利用注册中断时传入的dev_id这个值来判断是哪个按键发生了中断,dev_iq被赋值为pin_desc结构,如下:

struct pin_desc 
{
    unsigned int pin;      //是哪个按键
    unsigned int key_val;  //按键的按键值
};

static struct pin_desc  pins_desc[4] = 
{
    {S3C2410_GPF0,0x01},
    {S3C2410_GPF2,0x02},
    {S3C2410_GPG3,0x03},
    {S3C2410_GPG11,0x04}
};

取得哪个引脚发生的中断信息后,取得相应的引脚电平,然后确定按键值。接着将值传给key_val,再唤醒调用read的进程,将值直接拷贝给应用程序。具体函数如下

static unsigned int key_val;//全局变量
 
/*
  *0x01、0x02、0x03、0x04表示按键被按下
  */
  
/*
  *0x81、0x82、0x83、0x84表示按键被松开
  */

/*
  *利用dev_id的值为pins_desc来判断是哪一个按键被按下或松开
  */
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
    unsigned int pin_val;
    struct pin_desc * pin_desc = (struct pin_desc *)dev_id;//取得哪个按键被按下的状态,dev_id是action->dev_id,即在注册中断时传入的&pin_desc[num]
    
    pin_val = s3c2410_gpio_getpin(pin_desc->pin);          //取得按键对应的IO口的电平状态
    
    if(pin_val) //按键松开
        key_val = 0x80 | pin_desc->key_val;
    else
        key_val = pin_desc->key_val;


    wake_up_interruptible(&button_waitq);   /* 唤醒休眠的进程,即调用read函数的进程 */
    ev_press = 1;    
    
    return IRQ_HANDLED;
}

5)、整体代码

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <asm/io.h>        //含有iomap函数iounmap函数
#include <asm/uaccess.h>//含有copy_from_user函数
#include <linux/device.h>//含有类相关的处理函数
#include <asm/arch/regs-gpio.h>//含有S3C2410_GPF0等相关的
#include <linux/irq.h>    //含有IRQ_HANDLED\IRQ_TYPE_EDGE_RISING
#include <asm-arm/irq.h>   //含有IRQT_BOTHEDGE触发类型
#include <linux/interrupt.h> //含有request_irq、free_irq函数

//#include <asm-arm\arch-s3c2410\irqs.h>



static struct class *third_drv_class;//
static struct class_device *third_drv_class_dev;//类下面的设备
static int thirdmajor;

static unsigned long *gpfcon = NULL;
static unsigned long *gpfdat = NULL;
static unsigned long *gpgcon = NULL;
static unsigned long *gpgdat = NULL;




struct pin_desc 
{
    unsigned int pin;      //是哪个按键
    unsigned int key_val;  //按键的按键值
};

static struct pin_desc  pins_desc[4] = 
{
    {S3C2410_GPF0,0x01},
    {S3C2410_GPF2,0x02},
    {S3C2410_GPG3,0x03},
    {S3C2410_GPG11,0x04}
};


unsigned int ev_press;
DECLARE_WAIT_QUEUE_HEAD(button_waitq);//注册一个等待队列button_waitq

static unsigned int key_val;//全局变量
 
/*
  *0x01、0x02、0x03、0x04表示按键被按下
  */
  
/*
  *0x81、0x82、0x83、0x84表示按键被松开
  */

/*
  *利用dev_id的值为pins_desc来判断是哪一个按键被按下或松开
  */
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
    unsigned int pin_val;
    struct pin_desc * pin_desc = (struct pin_desc *)dev_id;//取得哪个按键被按下的状态,dev_id是action->dev_id,即在注册中断时传入的&pin_desc[num]
    
    pin_val = s3c2410_gpio_getpin(pin_desc->pin);          //取得按键对应的IO口的电平状态
    
    if(pin_val) //按键松开
        key_val = 0x80 | pin_desc->key_val;
    else
        key_val = pin_desc->key_val;


    wake_up_interruptible(&button_waitq);   /* 唤醒休眠的进程,即调用read函数的进程 */
    ev_press = 1;    
    
    return IRQ_HANDLED;
}



static int third_drv_open (struct inode * inode, struct file * file)
{
    int ret;
    ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);//注册一个外部中断S1,双边沿触发,dev_id为&pins_desc[0]
    if(ret)
    {
        printk("open failed 1\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);//注册一个外部中断S2,双边沿触发,dev_id为&pins_desc[1]
    if(ret)
    {
        printk("open failed 2\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);//注册一个外部中断S3,双边沿触发,dev_id为&pins_desc[2]
    if(ret)
    {
        printk("open failed 3\n");
        return -1;
    }
    ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);//注册一个外部中断S4,双边沿触发,dev_id为&pins_desc[3]
    if(ret)
    {
        printk("open failed 4\n");
        return -1;
    }
    
    return 0;
}


static int third_drv_close(struct inode * inode, struct file * file)
{
    free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);//释放中断,根据IRQ_EINT0找到irq_desc结构。根据pins_desc[0]找到irq_desc->action结构

     free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);//释放中断,根据IRQ_EINT2找到irq_desc结构。根据pins_desc[2]找到irq_desc->action结构

    free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);//释放中断,根据IRQ_EINT11找到irq_desc结构。根据pins_desc[3]找到irq_desc->action结构

    free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);//释放中断,根据IRQ_EINT19找到irq_desc结构。根据pins_desc[4]找到irq_desc->action结构

    return 0;
}

static ssize_t third_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off)
{
    int ret;

    if(count != 1)
    {
        printk("read error\n");
        return -1;
    }

    wait_event_interruptible(button_waitq, ev_press);//将当前进程放入等待队列button_waitq中,并且释放CPU进入睡眠状态
    
    ret = copy_to_user(userbuf, &key_val, 1);//将取得的按键值传给上层应用
    ev_press = 0;//按键已经处理可以继续睡眠
    
    if(ret)
    {
        printk("copy error\n");
        return -1;
    }
    
    return 1;
}



static struct file_operations third_drv_ops = 
{
    .owner   = THIS_MODULE,
    .open    =  third_drv_open,
    .read     = third_drv_read,
    .release = third_drv_close,//增加关闭函数
};

static int third_drv_init(void)
{
    thirdmajor = register_chrdev(0, "buttons", &third_drv_ops);//注册驱动程序

    if(thirdmajor < 0)
        printk("failes 1 buttons_drv register\n");
    
    third_drv_class = class_create(THIS_MODULE, "buttons");//创建类
    if(third_drv_class < 0)
        printk("failes 2 buttons_drv register\n");
    third_drv_class_dev = class_device_create(third_drv_class, NULL, MKDEV(thirdmajor,0), NULL,"buttons");//创建设备节点
    if(third_drv_class_dev < 0)
        printk("failes 3 buttons_drv register\n");

    
    gpfcon = ioremap(0x56000050, 16);//重映射
    gpfdat = gpfcon + 1;
    gpgcon = ioremap(0x56000060, 16);//重映射
    gpgdat = gpgcon + 1;

    printk("register buttons_drv\n");
    return 0;
}

static void third_drv_exit(void)
{
    unregister_chrdev(thirdmajor,"buttons");

    class_device_unregister(third_drv_class_dev);
    class_destroy(third_drv_class);

    iounmap(gpfcon);
    iounmap(gpgcon);

    printk("unregister buttons_drv\n");
}


module_init(third_drv_init);
module_exit(third_drv_exit);

MODULE_LICENSE("GPL");

 

4、确定应用程序功能,编写测试代码。

测试程序实现四个按键中有一个按键按下时,打印出这个按键的按键值。./third_test。直接看代码

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>

/*
  *usage ./buttonstest
  */
int main(int argc, char **argv)
{
    int fd;
    char* filename="dev/buttons";
   unsigned char key_val;
  unsigned long cnt=0;
    fd = open(filename, O_RDWR);//打开dev/firstdrv设备文件
    if (fd < 0)//小于0说明没有成功
    {
        printf("error, can't open %s\n", filename);
        return 0;
    }
    
    if(argc !=1)
    {
        printf("Usage : %s ",argv[0]);
     return 0;
    }

  while(1)
  {
     read(fd, &key_val, 1);
     printf("key_val: %x\n",key_val);
  }
    
   return 0;
}

 

5、编写Makefile,编译驱动代码与测试代码,在开发板上运行

Makefile源码如下:

KERN_DIR = /work/system/linux-2.6.22.6

all:
        make -C $(KERN_DIR) M=`pwd` modules //M='pwd'表示当前目录。这句话的意思是利用内核目录下的Makefile规则来编译当前目录下的模块

clean:
        make -C $(KERN_DIR) M=`pwd` modules clean
        rm -rf modules.order

obj-m   +=third_drv.o//调用内核目录下Makefile编译时需要用到这个参数

1)、然后在当前目录下make后编译出third_drv.ko文件

2)、arm-linux-gcc -o third_test third_test.c编译出third_test测试程序

3)、cp third_drv.ko third_test /work/nfs_root将编译出来的文件拷贝到开发板挂接的网络文件系统上

4)、执行insmod third_drv.ko加载驱动。

5)、./third_test测试程序,按下按键,成功打印按键值,用top命令查看应用程序发现third_test程序占用了0%的CPU资源,驱动程序相比查询方式的驱动改善了。