poj 2480 (欧拉函数应用)

时间:2025-01-10 10:36:02

点击打开链接

//求SUM(gcd(i,n), 1<=i<=n)
/*
g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1)
所以gcd(i,n)是积性的,所以f(n)=sum(gcd(i,n))是积性的,
f(n)=f(p1^a1*p2^a2*...*pn^an)=f(p1^a1)*f(p2^a2)*..*f(pn^an)
求f(p1^a1)就可以了,设d为p1^a1的一个因子,gcd(i,n)的个数为phi(n/d)
(gcd(i,n/d)==1,符合欧拉函数)
p1^a1有a1+1个因子1,p1,p1^2,...,p1^a1
f(p1^a1)=phi(p1^a1)+p1*phi(p1^(a1-1))+..+p1^(a1-1)*phi(p1)+p1^a1*phi(1)
=p1^a1*(1+a1*(1-1/p1))
f(n)=n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*..*(1+an*(1-1/pn)); */
#include"stdio.h"
#include"string.h"
#include"math.h"
typedef __int64 LL;
int main()
{
int i;
int n,a;
LL ans;
int b;
while(scanf("%d",&n)!=-1)
{
ans=n;
b=sqrt(1.0*n);
for(i=2;i<=b;i++)
{
if(n%i==0)
{
a=0;
while(n%i==0)
{
n/=i;
a++;
}
ans=ans+ans*a*(i-1)/i;
}
}
if(n!=1)ans=ans+ans*(n-1)/n;
printf("%I64d\n",ans);
}
return 0;
}