HDU 1211 EXGCD

时间:2023-03-08 18:11:04

EXGCD的模板水题

RSA算法
给你两个大素数p,q
定义n=pq,F(n)=(p-1)(q-1)
找一个数e 使得(e⊥F(n))
实际题目会给你e,p,q
计算d,$de \mod F(n) = 1$
然后解密的值为$c_{i}^d \mod n$,转换成char输出 用EXGCD求出d就好了

/** @Date    : 2017-09-07 22:17:00
* @FileName: HDU 1211 EXGCD.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL exgcd(LL a, LL b, LL &x, LL &y)
{
LL d = a;
if(b == 0)
{
x = 1;
y = 0;
}
else
{
d = exgcd(b, a % b, y, x);
y -= (a / b)*x;
}
return d;
} LL fpow(LL a, LL n, LL mod)
{
LL res = 1;
while(n)
{
if(n & 1)
res = (res * a % mod + mod) %mod;
a = (a * a % mod + mod) % mod;
n >>= 1;
}
return res;
}
LL p, q, e, n;
LL a[N];
int main()
{
while(~scanf("%lld%lld%lld%lld", &p, &q, &e, &n))
{
for(int i = 0; i < n; i++) scanf("%lld", a + i);
LL mod = p * q;
LL fn = (p - 1) * (q - 1);
for(int i = 0; i < n; i++)
{
LL d = 0 , y = 0;
exgcd(e, fn, d, y);
d = (d + fn) % fn;
a[i] %= mod;
LL ans = fpow(a[i], d, mod);
printf("%c", fpow(a[i], d, mod) % mod);
}
printf("\n");
}
return 0;
}