Kth number
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
Give you a sequence and ask you the kth big number of a inteval.
Input
The first line is the number of the test cases.
For each test case, the first line contain two integer n and m (n, m <= 100000), indicates the number of integers in the sequence and the number of the quaere.
The second line contains n integers, describe the sequence.
Each of following m lines contains three integers s, t, k.
[s, t] indicates the interval and k indicates the kth big number in interval [s, t]
For each test case, the first line contain two integer n and m (n, m <= 100000), indicates the number of integers in the sequence and the number of the quaere.
The second line contains n integers, describe the sequence.
Each of following m lines contains three integers s, t, k.
[s, t] indicates the interval and k indicates the kth big number in interval [s, t]
Output
For each test case, output m lines. Each line contains the kth big number.
Sample Input
1
10 1
1 4 2 3 5 6 7 8 9 0
1 3 2
10 1
1 4 2 3 5 6 7 8 9 0
1 3 2
Sample Output
2
Source
思路:主席树板子题;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=1e6+,inf=;
const ll INF=1e18+,mod=;
struct Chairmantree
{
int rt[N*],ls[N*],rs[N*],sum[N*];
int tot;
void init()
{
tot=;
}
void build(int l,int r,int &pos)
{
pos=++tot;
sum[pos]=;
if(l==r)return;
int mid=(l+r)>>;
build(l,mid,ls[pos]);
build(mid+,r,rs[pos]);
}
void update(int p,int c,int pre,int l,int r,int &pos)
{
pos=++tot;
ls[pos]=ls[pre];
rs[pos]=rs[pre];
sum[pos]=sum[pre]+c;
if(l==r)return;
int mid=(l+r)>>;
if(p<=mid)
update(p,c,ls[pre],l,mid,ls[pos]);
else
update(p,c,rs[pre],mid+,r,rs[pos]);
}
int query(int L,int R,int l,int r,int k)
{
if(l==r)return l;
int mid=(l+r)>>;
int num=sum[ls[R]]-sum[ls[L]];
if(k<=num)return query(ls[L],ls[R],l,mid,k);
else return query(rs[L],rs[R],mid+,r,k-num);
}
};
Chairmantree tree;
int a[N],b[N];
int getpos(int x,int cnt)
{
int pos=lower_bound(b+,b+cnt,x)-b;
return pos;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+,b++n);
int num=unique(b+,b++n)-b;
tree.init();
tree.build(,num-,tree.rt[]);
for(int i=;i<=n;i++)
{
int p=getpos(a[i],num);
tree.update(p,,tree.rt[i-],,num-,tree.rt[i]);
}
//for(int i=1;i<num;i++)
// printf("%d ",tree.rt[i]);
//printf("\n");
while(m--)
{
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n",b[tree.query(tree.rt[l-],tree.rt[r],,num-,k)]);
}
}
return ;
}