Description
Alice想要得到一个长度为 \(n\) 的序列,序列中的数都是不超过 \(m\) 的正整数,而且这 \(n\) 个数的和是 \(p\) 的倍数。
Alice还希望,这 \(n\) 个数中,至少有一个数是质数。
Alice想知道,有多少个序列满足她的要求。
Input
一行三个数,\(n,m,p\)。
Output
一行一个数,满足Alice的要求的序列数量,答案对 \(20170408\) 取模。
Sample Input
3 5 3
Sample Output
33
HINT
对 \(20\%\) 的数据,\(1\leq n,m\leq100\)
对 \(50\%\) 的数据,\(1\leq m \leq 100\)
对 \(80\%\) 的数据,\(1\leq m\leq 10^6\)
对 \(100\%\) 的数据,\(1\leq n \leq 10^9,1\leq m \leq 2\times 10^7,1\leq p\leq 100\)
Solution
设 \(f[i][j]\) 表示前 \(i\) 位之和模 \(p\) 等于 \(j\) 的方案数,\(g[i]\) 表示在模 \(p\) 意义下等于 \(i\) 的数的个数,有
\[f[i][j]=f[i-1][k]\cdot g[(j+p-k)\bmod p],0\le k < p
\]
\]
可构造出转移矩阵
\[\begin{bmatrix}
g_0&g_{p-1}&\cdots&g_{1}\\
g_{1}&g_{0}&\cdots&g_{2}\\
\vdots&\vdots&\ddots&\vdots\\
g_{p-1}&g_{p-2}&\cdots&g_{0}
\end{bmatrix}
\begin{bmatrix}
f_0\\
f_1\\
\vdots\\
f_{p-1}
\end{bmatrix}
\]
g_0&g_{p-1}&\cdots&g_{1}\\
g_{1}&g_{0}&\cdots&g_{2}\\
\vdots&\vdots&\ddots&\vdots\\
g_{p-1}&g_{p-2}&\cdots&g_{0}
\end{bmatrix}
\begin{bmatrix}
f_0\\
f_1\\
\vdots\\
f_{p-1}
\end{bmatrix}
\]
最后用总的答案减去不包含质数的答案。
再科普一下NTT做法:
\[(g_0+g_1x+g_2x^2+\cdots+g_{p-1}x^{p-1})^{n-1}
\]
\]
Code
#include <cstdio>
#include <cstring>
const int N = 20000002, mod = 20170408;
int n, m, p, pr[N], np[N], tot, f[102], g[102];
struct Matrix {
int mat[102][102];
Matrix(){ memset(mat, 0, sizeof mat); }
Matrix operator * (const Matrix a) const {
Matrix b;
for (int i = 1; i <= p; ++i)
for (int j = 1; j <= p; ++j)
for (int k = 1; k <= p; ++k)
b.mat[i][j] = (b.mat[i][j] + 1LL * a.mat[i][k] * mat[k][j]) % mod;
return b;
}
} unit, a, b;
void sieve() {
np[1] = 1;
for (int i = 2; i <= m; ++i) {
if (!np[i]) pr[++tot] = i;
for (int j = 1; j <= tot && i * pr[j] <= m; ++j) {
np[i * pr[j]] = 1;
if (i % pr[j] == 0) break;
}
}
}
int ksm(Matrix a, int b) {
Matrix res = unit;
for (; b; b >>= 1, a = a * a)
if (b & 1) res = res * a;
return res.mat[1][1];
}
int main() {
scanf("%d%d%d", &n, &m, &p);
sieve();
for (int i = 1; i <= p; ++i) unit.mat[i][i] = 1;
for (int i = 1; i <= m; ++i) ++f[i % p];
for (int i = 1; i <= m; ++i) if (np[i]) ++g[i % p];
for (int i = 1; i <= p; ++i) {
int k = 1;
for (int j = i - 1; j >= 0; --j, ++k) a.mat[i][k] = f[j], b.mat[i][k] = g[j];
for (int j = p - 1; j >= i; --j, ++k) a.mat[i][k] = f[j], b.mat[i][k] = g[j];
}
printf("%d\n", (ksm(a, n) - ksm(b, n) + mod) % mod);
return 0;
}