CS231n-lecture2-Image Classification pipeline 课堂笔记

时间:2024-12-30 09:33:38

---恢复内容开始---

相关资源

 Event Type  Date  Description  Course Materials
Lecture 2 Thursday 
April 6
Image Classification 
The data-driven approach 
K-nearest neighbor 
Linear classification I
[slides] 
[python/numpy tutorial]
[image classification notes]
[linear classification notes]

作业

It is due January  (i.e. in two weeks). Handed in through CourseWork
It includes:
- Write/train/evaluate a kNN classifier
- Write/train/evaluate a Linear Classifier (SVM and Softmax)
- Write/train/evaluate a -layer Neural Network (backpropagation!)
- Requires writing numpy/Python code

Python Numpy

PPT

图像识别

语义鸿沟问题semantic gap

Images are represented as 3D arrays of numbers, with integers between [0, 255].

挑战:(1)Viewpoint Variation  相机需要调整,使其具有鲁棒性。

(2)光线

(3)Deformation变形,姿势

(3)Occlusion遮蔽问题,只能看清所判别种类的一部分,e.g. 10%

(4)background clutter 背景杂斑

(5)Intraclassvariation 同类演变

Data-driven approach:

1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images

---恢复内容结束---

相关资源

 Event Type  Date  Description  Course Materials
Lecture 2 Thursday 
April 6
Image Classification 
The data-driven approach 
K-nearest neighbor 
Linear classification I
[slides] 
[python/numpy tutorial]
[image classification notes]
[linear classification notes]

作业

It is due January  (i.e. in two weeks). Handed in through CourseWork
It includes:
- Write/train/evaluate a kNN classifier
- Write/train/evaluate a Linear Classifier (SVM and Softmax)
- Write/train/evaluate a -layer Neural Network (backpropagation!)
- Requires writing numpy/Python code

Python Numpy

PPT

图像识别

语义鸿沟问题semantic gap

Images are represented as 3D arrays of numbers, with integers between [0, 255].

挑战:(1)Viewpoint Variation  相机需要调整,使其具有鲁棒性。

(2)光线

(3)Deformation变形,姿势

(3)Occlusion遮蔽问题,只能看清所判别种类的一部分,e.g. 10%

(4)background clutter 背景杂斑

(5)Intraclassvariation 同类演变

Data-driven approach:

1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier
3. Evaluate the classifier on a withheld set of test images