What is the most efficient way to organise the following pandas Dataframe:
最有效的方式是什么?
data =
data =
Position Letter
1 a
2 b
3 c
4 d
5 e
into a dictionary like alphabet[1 : 'a', 2 : 'b', 3 : 'c', 4 : 'd', 5 : 'e']
?
如字母表[1:'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e']?
2 个解决方案
#1
62
In [9]: Series(df.Letter.values,index=df.Position).to_dict()
Out[9]: {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
Speed comparion (using Wouter's method)
速度比较(使用Wouter方法)
In [6]: df = DataFrame(randint(0,10,10000).reshape(5000,2),columns=list('AB'))
In [7]: %timeit dict(zip(df.A,df.B))
1000 loops, best of 3: 1.27 ms per loop
In [8]: %timeit Series(df.A.values,index=df.B).to_dict()
1000 loops, best of 3: 987 us per loop
#2
24
I found a faster way to solve the problem, at least on realistically large datasets using: df.set_index(KEY).to_dict()[VALUE]
我找到了一种更快的方法来解决这个问题,至少在使用df.set_index(KEY).to_dict()[VALUE]的实际大型数据集上是这样
Proof on 50,000 rows:
证明在50000行:
df = pd.DataFrame(np.random.randint(32, 120, 100000).reshape(50000,2),columns=list('AB'))
df['A'] = df['A'].apply(chr)
%timeit dict(zip(df.A,df.B))
%timeit pd.Series(df.A.values,index=df.B).to_dict()
%timeit df.set_index('A').to_dict()['B']
Output:
输出:
100 loops, best of 3: 7.04 ms per loop # WouterOvermeire
100 loops, best of 3: 9.83 ms per loop # Jeff
100 loops, best of 3: 4.28 ms per loop # Kikohs (me)
#1
62
In [9]: Series(df.Letter.values,index=df.Position).to_dict()
Out[9]: {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
Speed comparion (using Wouter's method)
速度比较(使用Wouter方法)
In [6]: df = DataFrame(randint(0,10,10000).reshape(5000,2),columns=list('AB'))
In [7]: %timeit dict(zip(df.A,df.B))
1000 loops, best of 3: 1.27 ms per loop
In [8]: %timeit Series(df.A.values,index=df.B).to_dict()
1000 loops, best of 3: 987 us per loop
#2
24
I found a faster way to solve the problem, at least on realistically large datasets using: df.set_index(KEY).to_dict()[VALUE]
我找到了一种更快的方法来解决这个问题,至少在使用df.set_index(KEY).to_dict()[VALUE]的实际大型数据集上是这样
Proof on 50,000 rows:
证明在50000行:
df = pd.DataFrame(np.random.randint(32, 120, 100000).reshape(50000,2),columns=list('AB'))
df['A'] = df['A'].apply(chr)
%timeit dict(zip(df.A,df.B))
%timeit pd.Series(df.A.values,index=df.B).to_dict()
%timeit df.set_index('A').to_dict()['B']
Output:
输出:
100 loops, best of 3: 7.04 ms per loop # WouterOvermeire
100 loops, best of 3: 9.83 ms per loop # Jeff
100 loops, best of 3: 4.28 ms per loop # Kikohs (me)